Fish, Amphibian, Fungi, Mammal, Mollusk, Reptile FISH Common

Total Page:16

File Type:pdf, Size:1020Kb

Fish, Amphibian, Fungi, Mammal, Mollusk, Reptile FISH Common Fish, Amphibian, Fungi, Mammal, Mollusk, Reptile FISH Cottonmouth-Agkistrodon piscivorus Common Carp-Cyprinus carpio Western Cottonmouth-Agkistrodon piscivorus leucostoma AMPHIBIAN Yellowbelly Racer-Coluber constrictor flaviventris Blanchard's Cricket Frog-Acris blanchardi Western Diamondback Rattlesnake-Crotalus atrox Cope's Gray Tree Frog-Hyla chrysoscelis Blotched Water Snake-Nerodia erythrogaster transversa Green Tree Frog-Hyla cinerea Western Rat Snake-Pantherophis obsoletus Gray Tree Frog-Hyla versicolor Rough Earthsnake-Virginia striatula Gulf Coast Toad-Incilius nebulifer Mediterranean House Gecko-Hemidactylus turcicus American Bullfrog-Lithobates catesbeianus Texas Spiny Lizard-Sceloporus olivaceus Southern Leopard Frog-Lithobates sphenocephalus Three-toed Box Turtle-Terrapene carolina triunguis Spotted Chorus Frog-Pseudacris clarkii Pond Slider-Trachemys scripta Cajun Chorus Frog-Pseudacris fouquettei Red-eared Slider-Trachemys scripta elegans Strecker's Chorus Frog-Pseudacris streckeri Eastern Spiny Softshell-Apalone spinifera Snapping Turtle-Chelydra serpentina ? (iNat has as animalia) Millipedes-Diplopoda FUNGI Gilled Mushrooms-Agaricales Jelly Ear-Auricularia auricula-judae Shelf Fungi-Polyporales Mushroom-Polyporus arcularius MAMMAL Coyote-Canis latrans Nine-banded Armadillo-Dasypus novemcinctus Bobcat-Lynx rufus Striped Skunk-Mephitis mephitis White-tailed Deer-Odocoileus virginianus Collared Peccary-Pecari tajacu Raccoon-Procyon lotor Fox Squirrel-Sciurus niger Wild Pig-Sus scrofa Eastern Cottontail-Sylvilagus floridanus Gray Fox-Urocyon cinereoargenteus MOLLUSK Milk Snail-Otala lactea Ramshorn Snails-Planorbidae southern flatcoil snail-Polygyra cereolus Prairie Rabdotus snail-Rabdotus mooreanus Decollate Snail-Rumina decollata ? (iNat has as protozoa) Dog Vomit Slime Mold-Fuligo septica REPTILE Copperhead-Agkistrodon contortrix Broad-banded Copperhead-Agkistrodon contortrix laticinctus .
Recommended publications
  • Resource Selection by an Ectothermic Predator in a Dynamic Thermal Landscape
    Received: 2 May 2017 | Revised: 16 August 2017 | Accepted: 17 August 2017 DOI: 10.1002/ece3.3440 ORIGINAL RESEARCH Resource selection by an ectothermic predator in a dynamic thermal landscape Andrew D. George1 | Grant M. Connette2 | Frank R. Thompson III3 | John Faaborg1 1Division of Biological Sciences, University of Missouri, Columbia, MO, USA Abstract 2Smithsonian Conservation Biology Institute, Predicting the effects of global climate change on species interactions has remained Front Royal, VA, USA difficult because there is a spatiotemporal mismatch between regional climate models 3U.S.D.A. Forest Service Northern Research and microclimates experienced by organisms. We evaluated resource selection in a Station, Columbia, MO, USA predominant ectothermic predator using a modeling approach that permitted us to Correspondence assess the importance of habitat structure and local real- time air temperatures within Andrew D. George, Department of Biology, Pittsburg State University, Pittsburg, KS USA. the same modeling framework. We radio- tracked 53 western ratsnakes (Pantherophis Email: [email protected] obsoletus) from 2010 to 2013 in central Missouri, USA, at study sites where this spe- cies has previously been linked to prey population demographics. We used Bayesian discrete choice models within an information theoretic framework to evaluate the sea- sonal effects of fine- scale vegetation structure and thermal conditions on ratsnake resource selection. Ratsnake resource selection was influenced most by canopy cover, canopy cover heterogeneity, understory cover, and air temperature heterogeneity. Ratsnakes generally preferred habitats with greater canopy heterogeneity early in the active season, and greater temperature heterogeneity later in the season. This sea- sonal shift potentially reflects differences in resource requirements and thermoregula- tion behavior.
    [Show full text]
  • Wood Frog (Rana Sylvatica): a Technical Conservation Assessment
    Wood Frog (Rana sylvatica): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project March 24, 2005 Erin Muths1, Suzanne Rittmann1, Jason Irwin2, Doug Keinath3, Rick Scherer4 1 U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Ave. Bldg C, Fort Collins, CO 80526 2 Department of Biology, Bucknell University, Lewisburg, PA 17837 3 Wyoming Natural Diversity Database, University of Wyoming, P.O. Box 3381, Laramie, WY 82072 4 Colorado State University, GDPE, Fort Collins, CO 80524 Peer Review Administered by Society for Conservation Biology Muths, E., S. Rittman, J. Irwin, D. Keinath, and R. Scherer. (2005, March 24). Wood Frog (Rana sylvatica): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/projects/scp/assessments/woodfrog.pdf [date of access]. ACKNOWLEDGMENTS The authors would like to acknowledge the help of the many people who contributed time and answered questions during our review of the literature. AUTHORS’ BIOGRAPHIES Dr. Erin Muths is a Zoologist with the U.S. Geological Survey – Fort Collins Science Center. She has been studying amphibians in Colorado and the Rocky Mountain Region for the last 10 years. Her research focuses on demographics of boreal toads, wood frogs and chorus frogs and methods research. She is a principle investigator for the USDOI Amphibian Research and Monitoring Initiative and is an Associate Editor for the Northwestern Naturalist. Dr. Muths earned a B.S. in Wildlife Ecology from the University of Wisconsin, Madison (1986); a M.S. in Biology (Systematics and Ecology) from Kansas State University (1990) and a Ph.D.
    [Show full text]
  • Uperodon Systoma) on the Pondicherry University Campus, Puducherry, India
    WWW.IRCF.ORG TABLE OF CONTENTS IRCF REPTILES &IRCF AMPHIBIANS REPTILES • VOL &15, AMPHIBIANS NO 4 • DEC 2008 • 189 27(2):245–246 • AUG 2020 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FEATURE ARTICLES Opportunistic. Chasing Bullsnakes (Pituophis catenifer sayi) in Wisconsin: Nocturnal Predation On the Road to Understanding the Ecology and Conservation of the Midwest’s Giant Serpent ...................... Joshua M. Kapfer 190 by a. TheDiurnal Shared History of Treeboas (Corallus Snake: grenadensis) and Humans An on Grenada: Indian Ratsnake, A Hypothetical Excursion ............................................................................................................................Robert W. Henderson 198 PtyasRESEARCH mucosa ARTICLES (Linnaeus 1758), Preying on . The Texas Horned Lizard in Central and Western Texas ....................... Emily Henry, Jason Brewer, Krista Mougey, and Gad Perry 204 . The Knight Anole (Anolis equestris) in Florida Marbled ............................................. BalloonBrian J. Camposano, Frogs Kenneth L. Krysko, Kevin ( M.Uperodon Enge, Ellen M. Donlan, and Michael Granatoskysystoma 212 ) CONSERVATIONAvrajjal ALERT Ghosh1,2, Shweta Madgulkar2, and Krishnendu Banerjee2,3 . World’s Mammals in Crisis ............................................................................................................................................................. 220 1 School of Biological. More Sciences, Than Mammals National ..............................................................................................................................
    [Show full text]
  • REPTILIA: SQUAMATA: PHRYNOSOMATIDAE Sceloporus Poinsettii
    856.1 REPTILIA: SQUAMATA: PHRYNOSOMATIDAE Sceloporus poinsettii Catalogue of American Amphibians and Reptiles. Webb, R.G. 2008. Sceloporus poinsettii. Sceloporus poinsettii Baird and Girard Crevice Spiny Lizard Sceloporus poinsettii Baird and Girard 1852:126. Type-locality, “Rio San Pedro of the Rio Grande del Norte, and the province of Sonora,” restricted to either the southern part of the Big Burro Moun- tains or the vicinity of Santa Rita, Grant County, New Mexico by Webb (1988). Lectotype, National Figure 1. Adult male Sceloporus poinsettii poinsettii (UTEP Museum of Natural History (USNM) 2952 (subse- 8714) from the Magdalena Mountains, Socorro County, quently recataloged as USNM 292580), adult New Mexico (photo by author). male, collected by John H. Clark in company with Col. James D. Graham during his tenure with the U.S.-Mexican Boundary Commission in late Au- gust 1851 (examined by author). See Remarks. Sceloporus poinsetii: Duméril 1858:547. Lapsus. Tropidolepis poinsetti: Dugès 1869:143. Invalid emendation (see Remarks). Sceloporus torquatus Var. C.: Bocourt 1874:173. Sceloporus poinsetti: Yarrow “1882"[1883]:58. Invalid emendation. S.[celoporus] t.[orquatus] poinsettii: Cope 1885:402. Seloporus poinsettiii: Herrick, Terry, and Herrick 1899:123. Lapsus. Sceloporus torquatus poinsetti: Brown 1903:546. Sceloporus poissetti: Král 1969:187. Lapsus. Figure 2. Adult female Sceloporus poinsettii axtelli (UTEP S.[celoporus] poinssetti: Méndez-De la Cruz and Gu- 11510) from Alamo Mountain (Cornudas Mountains), tiérrez-Mayén 1991:2. Lapsus. Otero County, New Mexico (photo by author). Scelophorus poinsettii: Cloud, Mallouf, Mercado-Al- linger, Hoyt, Kenmotsu, Sanchez, and Madrid 1994:119. Lapsus. Sceloporus poinsetti aureolus: Auth, Smith, Brown, and Lintz 2000:72.
    [Show full text]
  • Preliminary Data on the Age Structure of Phrynocephalus Horvathi in Mount Ararat (Northeastern Anatolia, Turkey)
    BIHAREAN BIOLOGIST 6 (2): pp.112-115 ©Biharean Biologist, Oradea, Romania, 2012 Article No.: 121117 http://biozoojournals.3x.ro/bihbiol/index.html Preliminary data on the age structure of Phrynocephalus horvathi in Mount Ararat (Northeastern Anatolia, Turkey) Kerim ÇIÇEK1,*, Meltem KUMAŞ1, Dinçer AYAZ1 and C. Varol TOK2 1. Ege University, Faculty of Science, Biology Department, Zoology Section, Bornova, Izmir, Turkey 2. Çanakkale Onsekiz Mart University, Faculty of Science - Literature, Biology Department, Zoology Section, Terzioğlu Campus, Çanakkale/Turkey. *Corresponding author, K. Çiçek, E-mail: [email protected] / [email protected] Received: 24. September 2012 / Accepted: 22. October 2012 / Available online: 23. October 2012 / Printed: December 2012 Abstract. In this study, the age structure, growth and longevity of 27 individuals (8 juveniles, 8 males and 11 females) from the Mount Ararat (Iğdır, Turkey) population of Phrynocephalus horvathi were examined with the method of skeletochronology. According to the obtained data, the median age was 3.5 (range= 2-5) for males and 4 (2-5) for females. Both sexes reach sexual maturity after their first hibernation, and no statistically significant difference in age composition was observed between the sexes. According to von Bertalanffy growth curves, asymptotic body length was calculated as 51.29 mm and growth coefficient k - 0.60. Key words: Skeletochronology, growth, longevity, Phrynocephalus horvathi, Northeastern Anatolia. Introduction were measured using dial calipers to the nearest 0.01 mm and re- corded. The genus Phrynocephalus is a core of the Palearctic desert Humerus bones were dissected from specimens, fixed in 70% al- cohol and then washed with distilled water.
    [Show full text]
  • Dunes Sagebrush Lizard Habitat
    TECHNICAL NOTES U.S. DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE NEW MEXICO September, 2011 BIOLOGY TECHNICAL NOTE NO. 53 CRITERIA FOR BRUSH MANAGEMENT (314) in Lesser Prairie-Chicken and Dunes Sagebrush Lizard Habitat Introduction NRCS policy requires that when providing technical and financial assistance NRCS will recommend only conservation treatments that will avoid or minimize adverse effects, and to the extent practicable, provide long-term benefit to federal candidate species (General Manual 190 Part 410.22(E)(7)). This technical note provides the criteria to ensure that the NRCS practice of Brush Management (314) will avoid or minimize any adverse effects to two Candidate Species for Federal listing: the lesser prairie chicken Tympanuchus pallidicinctus (LEPC), and dunes sagebrush lizard Sceloporus arenicolus (DSL). Species Involved The lesser prairie chicken is a species of prairie grouse native to the southern high plains of the U.S.; including the sandhill rangelands of eastern New Mexico. The dunes sagebrush lizard is native only to a small area of southeastern New Mexico and west Texas, with a habitat range that overlaps the lesser prairie chicken range, but only occurs in the sand dune complexes associated with shinnery oak (Quercus havardii Rydb.). Both species’ habitat includes a component of brush: shinnery oak and/or sand sagebrush (Artemisia filifolia Torr.). See Appendix 1 and 2 for more details on each species. Geographic Area Covered by Technical Note No. 53 encompasses private and state lands within the range that supports the dunes sagebrush lizard and lesser prairie chicken habitat. This includes portions of seven counties in New Mexico: Chaves, Curry, De Baca, Eddy, Lea, Roosevelt, and Quay counties.
    [Show full text]
  • Animal Information Natural Treasures Reptiles (Non-Snakes)
    1 Animal Information Natural Treasures Reptiles (Non-Snakes) Table of Contents Red-footed Tortoise…………….………………………………………………………..2 Argentine Black and white Tegu.………………….………………………..……..4 Madagascar Giant Day Gecko.……………………………………….……..………5 Henkel’s Leaf-Tailed Gecko……………………………………………………………6 Panther Chameleon………………………………………………………………………8 Prehensile-tailed Skink………………………………………….……………………..10 Chuckwalla………………………………………………………….……………………….12 Crevice Spiny Lizard……………………………………………………………………..14 Gila Monster……………………………………………..………………………………...15 Dwarf Caiman………….…………………………………………………………………..17 Spotted Turtle……………………………………………………………………………..19 Mexican Beaded Lizard………………………………………………………………..21 Collared Lizard………………………………………………………………………....…23 Red-footed Tortoise Geocheloidis carbonaria 2 John Ball Zoo Habitat – Depending on whether they can be found either in the Natural Treasures Building or outside in the children’s zoo area across from the Budgie Aviary. Individual Animals: 1 Male, 1 Female Male – Morty (Smooth shell) o Age unknown . Records date back to 1985 o Arrived October 11, 2007 o Weight: 8.5lbs Female - Ethel o Age unknown o Arrived June 02, 2011 o Weight: 9.5-10lbs Life Expectancy Insufficient data Statistics Carapace Length – 1.6 feet for males, females tend to be smaller Diet – Frugivore – an animal that mainly eats fruit Wild – Fruit during the wet season and flowers during the dry season o Some soil and fungi Zoo – Salad mix (greens, fruits, veggies) hard boiled eggs, and fish o Fed twice a week Predators Other than humans, there is no information available concerning predators. Habitat Tropical, terrestrial Rainforests and savanna areas. It prefers heavily forested, humid habitats but avoids muddy areas due to low burrowing capacity of these habitats. Region Throughout the South American mainland and North of Argentina. Red-footed Tortoise 3 Geocheloidis carbonaria Reproduction – Polygynous (having more than one female as a mate at a time).
    [Show full text]
  • Introduction to Risk Assessments for Methods Used in Wildlife Damage Management
    Human Health and Ecological Risk Assessment for the Use of Wildlife Damage Management Methods by USDA-APHIS-Wildlife Services Chapter I Introduction to Risk Assessments for Methods Used in Wildlife Damage Management MAY 2017 Introduction to Risk Assessments for Methods Used in Wildlife Damage Management EXECUTIVE SUMMARY The USDA-APHIS-Wildlife Services (WS) Program completed Risk Assessments for methods used in wildlife damage management in 1992 (USDA 1997). While those Risk Assessments are still valid, for the most part, the WS Program has expanded programs into different areas of wildlife management and wildlife damage management (WDM) such as work on airports, with feral swine and management of other invasive species, disease surveillance and control. Inherently, these programs have expanded the methods being used. Additionally, research has improved the effectiveness and selectiveness of methods being used and made new tools available. Thus, new methods and strategies will be analyzed in these risk assessments to cover the latest methods being used. The risk assements are being completed in Chapters and will be made available on a website, which can be regularly updated. Similar methods are combined into single risk assessments for efficiency; for example Chapter IV contains all foothold traps being used including standard foothold traps, pole traps, and foot cuffs. The Introduction to Risk Assessments is Chapter I and was completed to give an overall summary of the national WS Program. The methods being used and risks to target and nontarget species, people, pets, and the environment, and the issue of humanenss are discussed in this Chapter. From FY11 to FY15, WS had work tasks associated with 53 different methods being used.
    [Show full text]
  • Riparian Management and the Tailed Frog in Northern Coastal Forests
    Forest Ecology and Management 124 (1999) 35±43 Riparian management and the tailed frog in northern coastal forests Linda Dupuis*,1, Doug Steventon Centre for Applied Conservation Biology, Department of Forest Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 Ministry of Forests, Prince Rupert Region, Bag 5000, Smithers, BC, Canada V0J 2N0 Received 28 July 1998; accepted 19 January 1999 Abstract Although the importance of aquatic environments and adjacent riparian habitats for ®sh have been recognized by forest managers, headwater creeks have received little attention. The tailed frog, Ascaphus truei, inhabits permanent headwaters, and several US studies suggest that its populations decline following clear-cut logging practices. In British Columbia, this species is considered to be at risk because little is known of its abundance, distribution patterns in the landscape, and habitat needs. We characterized nine logged, buffered and old-growth creeks in each of six watersheds (n 54). Tadpole densities were obtained by area-constrained searches. Despite large natural variation in population size, densities decreased with increasing levels of ®ne sediment (<64 mm diameter), rubble, detritus and wood, and increased with bank width. The parameters that were correlated with lower tadpole densities were found at higher levels in clear-cut creeks than in creeks of other stand types. Tadpole densities were signi®cantly lower in logged streams than in buffered and old-growth creeks; thus, forested buffers along streams appear to maintain natural channel conditions. To prevent direct physical damage and sedimentation of channel beds, we suggest that buffers be retained along permanent headwater creeks. Creeks that display characteristics favoring higher tadpole densities, such as those that have coarse, stable substrates, should have management priority over less favorable creeks.
    [Show full text]
  • AMPHIBIANS of OHIO F I E L D G U I D E DIVISION of WILDLIFE INTRODUCTION
    AMPHIBIANS OF OHIO f i e l d g u i d e DIVISION OF WILDLIFE INTRODUCTION Amphibians are typically shy, secre- Unlike reptiles, their skin is not scaly. Amphibian eggs must remain moist if tive animals. While a few amphibians Nor do they have claws on their toes. they are to hatch. The eggs do not have are relatively large, most are small, deli- Most amphibians prefer to come out at shells but rather are covered with a jelly- cately attractive, and brightly colored. night. like substance. Amphibians lay eggs sin- That some of these more vulnerable spe- gly, in masses, or in strings in the water The young undergo what is known cies survive at all is cause for wonder. or in some other moist place. as metamorphosis. They pass through Nearly 200 million years ago, amphib- a larval, usually aquatic, stage before As with all Ohio wildlife, the only ians were the first creatures to emerge drastically changing form and becoming real threat to their continued existence from the seas to begin life on land. The adults. is habitat degradation and destruction. term amphibian comes from the Greek Only by conserving suitable habitat to- Ohio is fortunate in having many spe- amphi, which means dual, and bios, day will we enable future generations to cies of amphibians. Although generally meaning life. While it is true that many study and enjoy Ohio’s amphibians. inconspicuous most of the year, during amphibians live a double life — spend- the breeding season, especially follow- ing part of their lives in water and the ing a warm, early spring rain, amphib- rest on land — some never go into the ians appear in great numbers seemingly water and others never leave it.
    [Show full text]
  • I Found a Frog…
    I Found a Frog…What Do I Do With It? Finding a frog or toad in your backyard is a great discovery, especially if you live in an urban setting where these creatures are rarely found. Unless you have a large pond, most frogs and toads we find are transients taking up temporary residence where food and habitat seem good. But when autumn rolls around, starts to cool off, and the frog has not left, what do you do with your little friend? Here is some advice: Does this mean I have a new pet frog or toad? No! Please do not take in the animal. Not only is this illegal, but this is a wild animal that will not do well in a captive environment. Also, the proper artificial habitat is expensive, combined with the cost of food for the winter. And if you get attached to the animal (which is difficult not to do), it will be more difficult to release it in the spring. Many of the animal’s special survival skills will be lost in captivity over the winter. Frogs and toads hibernate in the winter, and rest their bodies for the following summer season. Frogs will want to slow down as daytime temperatures and lengths decrease, but it is not cool enough in our homes to lower metabolic rates. As a result, the frog remains active, will not eat, and will slowly starve. Some frogs with specialized care and live food will change their natural cycles and begin to feed, but if yours does not, it will die unnecessarily.
    [Show full text]
  • Fish, Amphibians, and Reptiles)
    6-3.1 Compare the characteristic structures of invertebrate animals... and vertebrate animals (fish, amphibians, and reptiles). Also covers: 6-1.1, 6-1.2, 6-1.5, 6-3.2, 6-3.3 Fish, Amphibians, and Reptiles sections Can I find one? If you want to find a frog or salamander— 1 Chordates and Vertebrates two types of amphibians—visit a nearby Lab Endotherms and Exotherms pond or stream. By studying fish, amphib- 2 Fish ians, and reptiles, scientists can learn about a 3 Amphibians variety of vertebrate characteristics, includ- 4 Reptiles ing how these animals reproduce, develop, Lab Water Temperature and the and are classified. Respiration Rate of Fish Science Journal List two unique characteristics for Virtual Lab How are fish adapted each animal group you will be studying. to their environment? 220 Robert Lubeck/Animals Animals Start-Up Activities Fish, Amphibians, and Reptiles Make the following Foldable to help you organize Snake Hearing information about the animals you will be studying. How much do you know about reptiles? For example, do snakes have eyelids? Why do STEP 1 Fold one piece of paper lengthwise snakes flick their tongues in and out? How into thirds. can some snakes swallow animals that are larger than their own heads? Snakes don’t have ears, so how do they hear? In this lab, you will discover the answer to one of these questions. STEP 2 Fold the paper widthwise into fourths. 1. Hold a tuning fork by the stem and tap it on a hard piece of rubber, such as the sole of a shoe.
    [Show full text]