Genomic Modelling of Bipolar Disorders: Comparison of Multifactor Dimension Reduction and Classification-Based Data Mining Methods
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Downloaded from the Gene Expression Omnibus (GSE25219) Were Used for the Assessment of Prenatal Gene Expression
UCLA UCLA Electronic Theses and Dissertations Title Investigation of sex-differential genetic risk factors for autism spectrum disorders Permalink https://escholarship.org/uc/item/4cf1h61b Author Werling, Donna Marie Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Investigation of sex-differential genetic risk factors for autism spectrum disorders A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Neuroscience by Donna Marie Werling 2014 © Copyright by Donna Marie Werling 2014 ABSTRACT OF THE DISSERTATION Investigation of sex-differential genetic risk factors for autism spectrum disorders by Donna Marie Werling Doctor of Philosophy in Neuroscience University of California, Los Angeles, 2014 Professor Daniel H. Geschwind, Chair Autism spectrum disorders (ASDs) are pervasive neurodevelopmental disorders that affect more males than females, and the mechanisms responsible for increasing males’ risk or protecting females are not understood. This sex biased prevalence is consistent across time and populations, suggesting that an understanding of the processes driving sex-differential risk would likely be informative of fundamental pathophysiology in ASD. One known component of ASD risk is genetic variation. Thus, here I apply several approaches that leverage current knowledge of ASD genetics to investigate the role and mechanisms of sex-differential biology in ASD risk. First, I evaluate a cohort of families with more than one autistic child for evidence of sex- differential, familial risk variation. Second, I use genetic linkage analysis to identify sex- differential risk loci in families from the same multiplex cohort. -
UNIVERSITY of CALIFORNIA Los Angeles Investigation of Sex
UNIVERSITY OF CALIFORNIA Los Angeles Investigation of sex-differential genetic risk factors for autism spectrum disorders A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Neuroscience by Donna Marie Werling 2014 © Copyright by Donna Marie Werling 2014 ABSTRACT OF THE DISSERTATION Investigation of sex-differential genetic risk factors for autism spectrum disorders by Donna Marie Werling Doctor of Philosophy in Neuroscience University of California, Los Angeles, 2014 Professor Daniel H. Geschwind, Chair Autism spectrum disorders (ASDs) are pervasive neurodevelopmental disorders that affect more males than females, and the mechanisms responsible for increasing males’ risk or protecting females are not understood. This sex biased prevalence is consistent across time and populations, suggesting that an understanding of the processes driving sex-differential risk would likely be informative of fundamental pathophysiology in ASD. One known component of ASD risk is genetic variation. Thus, here I apply several approaches that leverage current knowledge of ASD genetics to investigate the role and mechanisms of sex-differential biology in ASD risk. First, I evaluate a cohort of families with more than one autistic child for evidence of sex- differential, familial risk variation. Second, I use genetic linkage analysis to identify sex- differential risk loci in families from the same multiplex cohort. Third, I characterize gene expression patterns in typical human neocortex to identify points of interaction between typical sexual dimorphism and genes known to carry risk variants for ASD. ii I find that recurrence rates for ASD diagnoses in multiplex families are consistent with a female protective model, in which females require more deleterious genetic variation to be affected with ASD and this greater genetic load is shared with females’ siblings. -
Pectinate Ligament Dysplasia and Primary Glaucoma in Dogs: Investigating Prevalence And
Pectinate ligament dysplasia and primary glaucoma in dogs: investigating prevalence and identifying genetic risk factors James Andrew Clive Oliver A thesis submitted for the degree of Doctor of Philosophy Animal Health Trust and UCL Institute of Ophthalmology 2018 1 Declaration I, James Oliver, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. James Oliver 2 Acknowledgments Acknowledgements The inception of this project sprung from my experience in treating canine primary glaucoma. The inability to save both the sight and the eyes of affected dogs and provide hope to their owners is a source of continued frustration. My quest, therefore, was to seek help in investigating the genetics of this devastating disease because, as they say, “prevention is better than cure”. At the culmination of this frustration, I was lucky to be practising at the Animal Health Trust (AHT), where Cathryn Mellersh, my primary PhD supervisor, and her world renowned Canine Genetics Research team reside. Without Cathryn’s encouragement, support and devotion to collaborative research to enhance animal welfare, none of this research would have been possible. Thank you Cathryn. I must also thank my UCL supervisor Alison Hardcastle who has always been there in the background to offer support and encouragement. I am also indebted to Paul Foster and David Sargan for performing my first year viva and providing their constructive criticisms which helped shape the direction of the project. My heartfelt thanks extend to Sally Ricketts, Louise Burmeister, Louise Pettitt and Rebekkah Hitti at the AHT for their patience and help in instructing a simple vet in the laboratory and statistical methodology required to perform this work which was an incredibly enjoyable, although at times steep, learning curve. -
Bases Genéticas De La Respuesta Radioadaptativa En Timocitos De Ratón
UNIVERSIDAD AUTÓNOMA DE MADRID Departamento de Biología Molecular Bases genéticas de la respuesta radioadaptativa en timocitos de ratón Manuel Malavé Galiana Manuel Malavé Galiana Madrid, 2014 Departamento de Biología Molecular Facultad de Ciencias UNIVERSIDAD AUTÓNOMA DE MADRID Bases genéticas de la respuesta radioadaptativa en timocitos de ratón Manuel Malavé Galiana, Biotecnología Javier Santos Hernández, Pablo Fernández-Navarro, José Fernández-Piqueras Centro de Biología Molecular 1 Manuel Malavé Galiana D. José Fernández-Piqueras, Catedrático de Genética del Centro de Biología Molecular Severo Ochoa/Universidad Autónoma de Madrid D. Javier Santos Hernández, Profesor Titular de Genética de la Universidad Autónoma de Madrid D. Pablo Fernández Navarro, Investigador Post-doc del Área de Epidemiología Ambiental y Cáncer del Centro Nacional de Epidemiología CERTIFICAN: Que Don Manuel Malavé Galiana ha realizado el trabajo de tesis doctoral que lleva por título “Bases Genéticas de la respuesta radioadaptativa en timocitos de ratón” bajo nuestra dirección y supervisión. Que, una vez revisado el trabajo, consideramos que éste tiene la debida calidad para su presentación y defensa. Y para que así conste a los efectos oportunos firmamos la presente en Madrid a 13 de noviembre de 2014. José Fernández-Piqueras Javier Santos Hernández Catedrático de Genética Profesor titular de Genética Dpto.Biología, UAM Dpto. Biología, UAM Centro de Biología Molecular Centro de Biología Molecular Severo Ochoa, UAM-CSIC Severo Ochoa, UAM-CSIC Pablo Fernández Navarro Investigador Pos-Doc Miguel Servet Área de Epidemiología Ambiental y Cáncer, Centro Nacional de Epidemiología Instituto de Salud Carlos III, Madrid 2 Manuel Malavé Galiana INDICE I. AGRADECIMIENTOS. …..………………………………………………………… 6 II. RESUMEN. ………………………………………………………………………… 8 III.