MATH 552 C. Homeomorphisms, Manifolds and Diffeomorphisms 2020-09 Bijections Let X and Y Be Sets, and Let U ⊂ X Be a Subset. A

Total Page:16

File Type:pdf, Size:1020Kb

MATH 552 C. Homeomorphisms, Manifolds and Diffeomorphisms 2020-09 Bijections Let X and Y Be Sets, and Let U ⊂ X Be a Subset. A MATH 552 C. Homeomorphisms, Manifolds and Diffeomorphisms 2021-09 Bijections Let X and Y be sets, and let U ⊆ X be a subset. A map (or function) f with domain U takes each element x 2 U to a unique element f(x) 2 Y . We write y = f(x); or x 7! f(x): Note that in the textbook and lecture notes, one writes f : X ! Y; even if the domain is a proper subset of X, and often the domain is not specified explicitly. The range (or image) of f is the subset f(U) = f y 2 Y : there exists x 2 U such that y = f(x) g: A map f : X ! Y is one-to-one (or is invertible, or is an injection) if for all x1, x2 in the domain, f(x1) = f(x2) implies x1 = x2 (equivalently, x1 6= x2 implies f(x1) 6= f(x2)). If f is one-to-one, then there is an inverse map (or inverse function) f −1 : Y ! X whose domain is the range f(U) of f. A map f : X ! Y is onto (or is a surjection) if f(U) = Y . We will say a map f : X ! Y is a bijection (or one-to-one correspondence) from X onto Y if its domain is all of X, and it is one-to-one and onto. If f is a bijection, then its inverse map f −1 : Y ! X is defined on all of Y . Homeomorphisms Let X and Y be topological spaces. Examples of topological spaces are: i) Rn; ii) a metric space; iii) a smooth manifold (see below); iv) an open subset of Rn or of a smooth manifold. A map h : X ! Y is a global homeomorphism from X onto Y if its domain is all of X, its range is all of Y , it is a bijection from X onto Y , and both h and its inverse map h−1 are continuous maps. Two topological spaces are equivalent (as topological spaces) if there is a global homeomor- phism from one topological space onto the other. If the domain of h : X ! Y is an open subset U ⊆ X, the range V = h(U) is an open subset V ⊆ Y , h is a bijection from U onto V , and both h and h−1 are continuous on their respective domains, then we call h a local homeomorphism from X into Y . For brevity we call either a global homeomorphism or a local homeomorphism simply a \homeomorphism" and write h : X ! Y . Manifolds and their tangent spaces In this course, we only consider manifolds that are smooth. The definition of a manifold given here is sufficient for us, but there are other, more general, definitions. Let F : Rn ! Rm be differentiable, with m < n. Then the subset of Rn given by n X = f x 2 R : F (x) = 0 g (the solution set of m equations in n unknowns) is a (smooth or differentiable) manifold in Rn if the m × n derivative (matrix) Fx(x) has rank m, the maximum possible, at each point x 2 X. In this case the dimension of X is d = n − m. If the map F is Cp, then we say X is a Cp manifold. Examples of manifolds are: i) Rn; ii) an open subset U ⊆ Rn; iii) the graph in Rn+m f(x; y): y = V (x)g of a smooth function V : Rn ! Rm that is defined on an open subset U ⊆ Rn (as an exercise, show that this satisfies the above definition for a manifold in Rn+m of dimension n ); iv) the 1 1 2 2 2 (1-dimensional) circle S = R =(2πZ) = f(x1; x2) 2 R : x1 + x2 − 1 = 0g; v) the (2-dimensional) cylinder S1 × R1; vi) the 2-dimensional torus or 2-torus T2 = S1 × S1; vii) an open subset of a manifold. A one-dimensional manifold in R2 or R3 is usually called a curve, a two-dimensional manifold in R3 is usually called a surface. If X is a manifold in Rn and x 2 X, then the tangent space to X at x is the vector space n TxX, in R , of all tangent vectors v =γ _ (0) for (smooth) curves γ : R ! X that lie in X with γ(0) = x (v is the tangent vector pointing in the directionγ _ (0) at the point x 2 X; we can think of it as a vector whose \tail" is at the point x and whose \tip" is at the point x + v). Alternatively, TxX is the vector space which is the orthogonal complement of frF1(x); ··· ; rFm(x) g, where Fj is the jth component of F , i.e. ? TxX = frF1(x); ··· ; rFm(x) g : The dimension of the tangent space TxX is equal to the dimension of the manifold X (for any x 2 X). Diffeomorphisms Let X and Y be manifolds. A map h : X ! Y is a global (Cp) diffeomorphism from X onto Y (p ≥ 1) if it is a global homeomorphism from X onto Y , and both h and its inverse map h−1 are (Cp) differentiable (thus, the manifolds X and Y must have the same dimension). If the domain U of h : X ! Y is an open subset of a manifold X, the range V = h(U) is an open subset of a manifold Y , h is a local homeomorphism, and both h and h−1 are (Cp) differentiable on their respective domains, then we call h a local (Cp) diffeomorphism from X into Y . As for homeomorphisms, for brevity we call either a global diffeomorphism or a local diffeomorphism simply a “diffeomorphism", and write h : X ! Y . Exercise. Show that f : R1 ! R1, given by the formula f(x) = x3, is a global homeomorphism, but not a global diffeomorphism. What prevents it from being a global diffeomorphism? 2.
Recommended publications
  • ON Hg-HOMEOMORPHISMS in TOPOLOGICAL SPACES
    Proyecciones Vol. 28, No 1, pp. 1—19, May 2009. Universidad Cat´olica del Norte Antofagasta - Chile ON g-HOMEOMORPHISMS IN TOPOLOGICAL SPACES e M. CALDAS UNIVERSIDADE FEDERAL FLUMINENSE, BRASIL S. JAFARI COLLEGE OF VESTSJAELLAND SOUTH, DENMARK N. RAJESH PONNAIYAH RAMAJAYAM COLLEGE, INDIA and M. L. THIVAGAR ARUL ANANDHAR COLLEGE Received : August 2006. Accepted : November 2008 Abstract In this paper, we first introduce a new class of closed map called g-closed map. Moreover, we introduce a new class of homeomor- phism called g-homeomorphism, which are weaker than homeomor- phism.e We prove that gc-homeomorphism and g-homeomorphism are independent.e We also introduce g*-homeomorphisms and prove that the set of all g*-homeomorphisms forms a groupe under the operation of composition of maps. e e 2000 Math. Subject Classification : 54A05, 54C08. Keywords and phrases : g-closed set, g-open set, g-continuous function, g-irresolute map. e e e e 2 M. Caldas, S. Jafari, N. Rajesh and M. L. Thivagar 1. Introduction The notion homeomorphism plays a very important role in topology. By definition, a homeomorphism between two topological spaces X and Y is a 1 bijective map f : X Y when both f and f − are continuous. It is well known that as J¨anich→ [[5], p.13] says correctly: homeomorphisms play the same role in topology that linear isomorphisms play in linear algebra, or that biholomorphic maps play in function theory, or group isomorphisms in group theory, or isometries in Riemannian geometry. In the course of generalizations of the notion of homeomorphism, Maki et al.
    [Show full text]
  • Math 5853 Homework Solutions 36. a Map F : X → Y Is Called an Open
    Math 5853 homework solutions 36. A map f : X → Y is called an open map if it takes open sets to open sets, and is called a closed map if it takes closed sets to closed sets. For example, a continuous bijection is a homeomorphism if and only if it is a closed map and an open map. 1. Give examples of continuous maps from R to R that are open but not closed, closed but not open, and neither open nor closed. open but not closed: f(x) = ex is a homeomorphism onto its image (0, ∞) (with the logarithm function as its inverse). If U is open, then f(U) is open in (0, ∞), and since (0, ∞) is open in R, f(U) is open in R. Therefore f is open. However, f(R) = (0, ∞) is not closed, so f is not closed. closed but not open: Constant functions are one example. We will give an example that is also surjective. Let f(x) = 0 for −1 ≤ x ≤ 1, f(x) = x − 1 for x ≥ 1, and f(x) = x+1 for x ≤ −1 (f is continuous by “gluing together on a finite collection of closed sets”). f is not open, since (−1, 1) is open but f((−1, 1)) = {0} is not open. To show that f is closed, let C be any closed subset of R. For n ∈ Z, −1 −1 define In = [n, n + 1]. Now, f (In) = [n + 1, n + 2] if n ≥ 1, f (I0) = [−1, 2], −1 −1 f (I−1) = [−2, 1], and f (In) = [n − 1, n] if n ≤ −2.
    [Show full text]
  • 07. Homeomorphisms and Embeddings
    07. Homeomorphisms and embeddings Homeomorphisms are the isomorphisms in the category of topological spaces and continuous functions. Definition. 1) A function f :(X; τ) ! (Y; σ) is called a homeomorphism between (X; τ) and (Y; σ) if f is bijective, continuous and the inverse function f −1 :(Y; σ) ! (X; τ) is continuous. 2) (X; τ) is called homeomorphic to (Y; σ) if there is a homeomorphism f : X ! Y . Remarks. 1) Being homeomorphic is apparently an equivalence relation on the class of all topological spaces. 2) It is a fundamental task in General Topology to decide whether two spaces are homeomorphic or not. 3) Homeomorphic spaces (X; τ) and (Y; σ) cannot be distinguished with respect to their topological structure because a homeomorphism f : X ! Y not only is a bijection between the elements of X and Y but also yields a bijection between the topologies via O 7! f(O). Hence a property whose definition relies only on set theoretic notions and the concept of an open set holds if and only if it holds in each homeomorphic space. Such properties are called topological properties. For example, ”first countable" is a topological property, whereas the notion of a bounded subset in R is not a topological property. R ! − t Example. The function f : ( 1; 1) with f(t) = 1+jtj is a −1 x homeomorphism, the inverse function is f (x) = 1−|xj . 1 − ! b−a a+b The function g :( 1; 1) (a; b) with g(x) = 2 x + 2 is a homeo- morphism. Therefore all open intervals in R are homeomorphic to each other and homeomorphic to R .
    [Show full text]
  • DIFFERENTIAL GEOMETRY Contents 1. Introduction 2 2. Differentiation 3
    DIFFERENTIAL GEOMETRY FINNUR LARUSSON´ Lecture notes for an honours course at the University of Adelaide Contents 1. Introduction 2 2. Differentiation 3 2.1. Review of the basics 3 2.2. The inverse function theorem 4 3. Smooth manifolds 7 3.1. Charts and atlases 7 3.2. Submanifolds and embeddings 8 3.3. Partitions of unity and Whitney’s embedding theorem 10 4. Tangent spaces 11 4.1. Germs, derivations, and equivalence classes of paths 11 4.2. The derivative of a smooth map 14 5. Differential forms and integration on manifolds 16 5.1. Introduction 16 5.2. A little multilinear algebra 17 5.3. Differential forms and the exterior derivative 18 5.4. Integration of differential forms on oriented manifolds 20 6. Stokes’ theorem 22 6.1. Manifolds with boundary 22 6.2. Statement and proof of Stokes’ theorem 24 6.3. Topological applications of Stokes’ theorem 26 7. Cohomology 28 7.1. De Rham cohomology 28 7.2. Cohomology calculations 30 7.3. Cechˇ cohomology and de Rham’s theorem 34 8. Exercises 36 9. References 42 Last change: 26 September 2008. These notes were originally written in 2007. They have been classroom-tested twice. Address: School of Mathematical Sciences, University of Adelaide, Adelaide SA 5005, Australia. E-mail address: [email protected] Copyright c Finnur L´arusson 2007. 1 1. Introduction The goal of this course is to acquire familiarity with the concept of a smooth manifold. Roughly speaking, a smooth manifold is a space on which we can do calculus. Manifolds arise in various areas of mathematics; they have a rich and deep theory with many applications, for example in physics.
    [Show full text]
  • Topologically Rigid (Surgery/Geodesic Flow/Homeomorphism Group/Marked Leaves/Foliated Control) F
    Proc. Natl. Acad. Sci. USA Vol. 86, pp. 3461-3463, May 1989 Mathematics Compact negatively curved manifolds (of dim # 3, 4) are topologically rigid (surgery/geodesic flow/homeomorphism group/marked leaves/foliated control) F. T. FARRELLt AND L. E. JONESt tDepartment of Mathematics, Columbia University, New York, NY 10027; and tDepartment of Mathematics, State University of New York, Stony Brook, NY 11794 Communicated by William Browder, January 27, 1989 (receivedfor review October 20, 1988) ABSTRACT Let M be a complete (connected) Riemannian COROLLARY 1.3. If M and N are both negatively curved, manifold having finite volume and whose sectional curvatures compact (connected) Riemannian manifolds with isomorphic lie in the interval [cl, c2d with -x < cl c2 < 0. Then any fundamental groups, then M and N are homeomorphic proper homotopy equivalence h:N -* M from a topological provided dim M 4 3 and 4. manifold N is properly homotopic to a homeomorphism, Gromov had previously shown (under the hypotheses of provided the dimension of M is >5. In particular, if M and N Corollary 1.3) that the total spaces of the tangent sphere are both compact (connected) negatively curved Riemannian bundles ofM and N are homeomorphic (even when dim M = manifolds with isomorphic fundamental groups, then M and N 3 or 4) by a homeomorphism preserving the orbits of the are homeomorphic provided dim M # 3 and 4. {If both are geodesic flows, and Cheeger had (even earlier) shown that locally symmetric, this is a consequence of Mostow's rigidity the total spaces of the two-frame bundles of M and N are theorem [Mostow, G.
    [Show full text]
  • (X,TX) and (Y,TY ) Is A
    Homeomorphisms. A homeomorphism between two topological spaces (X; X ) and (Y; Y ) is a one 1 T T - one correspondence such that f and f − are both continuous. Consequently, for every U X there is V Y such that V = F (U) and 1 2 T 2 T U = f − (V ). Furthermore, since f(U1 U2) = f(U1) f(U2) \ \ and f(U1 U2) = f(U1) f(U2) [ [ this equivalence extends to the structures of the spaces. Example Any open interval in R (with the inherited topology) is homeomorphic to R. One possible function from R to ( 1; 1) is f(x) = tanh x, and by suitable scaling this provides a homeomorphism onto− any finite open interval (a; b). b + a b a f(x) = + − tanh x 2 2 For semi-infinite intervals we can use with f(x) = a + ex from R to (a; ) and x 1 f(x) = b e− from R to ( ; b). − −∞ Since homeomorphism is an equivalence relation, this shows that all open inter- vals in R are homeomorphic. nb The functions chosen above are not unique. On the other hand, no closed interval [a; b] is homeomorphic to R, since such an interval is compact in R, and hence f([a; b]) is compact for any continuous function f. Example 2 The function f(z) = z2 induces a homeomorphism between the complex plane C and a two sheeted Riemann surface, which we can construct piecewise using f. Consider first the half-plane x > 0 C. The function f maps this half plane⊂ onto a complex plane missing the negative real axis.
    [Show full text]
  • A TEXTBOOK of TOPOLOGY Lltld
    SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY lltld SEI FER T: 7'0PO 1.OG 1' 0 I.' 3- Dl M E N SI 0 N A I. FIRERED SPACES This is a volume in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: SAMUELEILENBERG AND HYMANBASS A list of recent titles in this series appears at the end of this volunie. SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY H. SEIFERT and W. THRELFALL Translated by Michael A. Goldman und S E I FE R T: TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES H. SEIFERT Translated by Wolfgang Heil Edited by Joan S. Birman and Julian Eisner @ 1980 ACADEMIC PRESS A Subsidiary of Harcourr Brace Jovanovich, Publishers NEW YORK LONDON TORONTO SYDNEY SAN FRANCISCO COPYRIGHT@ 1980, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. 11 1 Fifth Avenue, New York. New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NWI 7DX Mit Genehmigung des Verlager B. G. Teubner, Stuttgart, veranstaltete, akin autorisierte englische Ubersetzung, der deutschen Originalausgdbe. Library of Congress Cataloging in Publication Data Seifert, Herbert, 1897- Seifert and Threlfall: A textbook of topology. Seifert: Topology of 3-dimensional fibered spaces. (Pure and applied mathematics, a series of mono- graphs and textbooks ; ) Translation of Lehrbuch der Topologic. Bibliography: p. Includes index. 1.
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • Lecture 10: Tubular Neighborhood Theorem
    LECTURE 10: TUBULAR NEIGHBORHOOD THEOREM 1. Generalized Inverse Function Theorem We will start with Theorem 1.1 (Generalized Inverse Function Theorem, compact version). Let f : M ! N be a smooth map that is one-to-one on a compact submanifold X of M. Moreover, suppose dfx : TxM ! Tf(x)N is a linear diffeomorphism for each x 2 X. Then f maps a neighborhood U of X in M diffeomorphically onto a neighborhood V of f(X) in N. Note that if we take X = fxg, i.e. a one-point set, then is the inverse function theorem we discussed in Lecture 2 and Lecture 6. According to that theorem, one can easily construct neighborhoods U of X and V of f(X) so that f is a local diffeomor- phism from U to V . To get a global diffeomorphism from a local diffeomorphism, we will need the following useful lemma: Lemma 1.2. Suppose f : M ! N is a local diffeomorphism near every x 2 M. If f is invertible, then f is a global diffeomorphism. Proof. We need to show f −1 is smooth. Fix any y = f(x). The smoothness of f −1 at y depends only on the behaviour of f −1 near y. Since f is a diffeomorphism from a −1 neighborhood of x onto a neighborhood of y, f is smooth at y. Proof of Generalized IFT, compact version. According to Lemma 1.2, it is enough to prove that f is one-to-one in a neighborhood of X. We may embed M into RK , and consider the \"-neighborhood" of X in M: X" = fx 2 M j d(x; X) < "g; where d(·; ·) is the Euclidean distance.
    [Show full text]
  • On Generalized Homeomorphisms in Topological Spaces
    Divulgaciones Matem´aticasVol. 9 No. 1(2001), pp. 55–63 More on Generalized Homeomorphisms in Topological Spaces M´asSobre Homeomorfismos Generalizados en Espacios Topol´ogicos Miguel Caldas ([email protected]) Departamento de Matem´aticaAplicada Universidade Federal Fluminense-IMUFF Rua M´arioSantos Braga s/n0; CEP:24020-140, Niteroi-RJ. Brasil. Abstract The aim of this paper is to continue the study of generalized home- omorphisms. For this we define three new classes of maps, namely c generalized Λs-open, generalized Λs-homeomorphisms and generalized I Λs-homeomorphisms, by using g:Λs-sets, which are generalizations of semi-open maps and generalizations of homeomorphisms. Key words and phrases: Topological spaces, semi-closed sets, semi- open sets, semi-homeomorphisms, semi-closed maps, irresolute maps. Resumen El objetivo de este trabajo es continuar el estudio de los homeomor- fismos generalizados. Para esto definimos tres nuevas clases de aplica- c ciones, denominadas Λs-abiertas generalizadas, Λs-homeomofismos ge- I neralizados y Λs-homeomorfismos generalizados, haciendo uso de los conjuntos g:Λs, los cuales son generalizaciones de las funciones semi- abiertas y generalizaciones de homeomorfismos. Palabras y frases clave: Espacios topol´ogicos,conjuntos semi-cerra- dos, conjuntos semi-abiertos, semi-homeomorfismos, aplicaciones semi- cerradas, aplicaciones irresolutas. Recibido 2000/10/23. Revisado 2001/03/20. Aceptado 2001/03/29. MSC (2000): Primary 54C10, 54D10. 56 Miguel Caldas 1 Introduction Recently in 1998, as an analogy of Maki [10],
    [Show full text]
  • Tangent Spaces
    CHAPTER 4 Tangent spaces So far, the fact that we dealt with general manifolds M and not just embedded submanifolds of Euclidean spaces did not pose any serious problem: we could make sense of everything right away, by moving (via charts) to opens inside Euclidean spaces. However, when trying to make sense of "tangent vectors", the situation is quite different. Indeed, already intuitively, when trying to draw a "tangent space" to a manifold M, we are tempted to look at M as part of a bigger (Euclidean) space and draw planes that are "tangent" (in the intuitive sense) to M. The fact that the tangent spaces of M are intrinsic to M and not to the way it sits inside a bigger ambient space is remarkable and may seem counterintuitive at first. And it shows that the notion of tangent vector is indeed of a geometric, intrinsic nature. Given our preconception (due to our intuition), the actual general definition may look a bit abstract. For that reason, we describe several different (but equivalent) approaches to tangent m spaces. Each one of them starts with one intuitive perception of tangent vectors on R , and then proceeds by concentrating on the main properties (to be taken as axioms) of the intuitive perception. However, before proceeding, it is useful to clearly state what we expect: • tangent spaces: for M-manifold, p 2 M, have a vector space TpM. And, of course, m~ for embedded submanifolds M ⊂ R , these tangent spaces should be (canonically) isomorphic to the previously defined tangent spaces TpM. • differentials: for smooths map F : M ! N (between manifolds), p 2 M, have an induced linear map (dF )p : TpM ! TF (p)N; m called the differential of F at p.
    [Show full text]
  • A Grothendieck Site Is a Small Category C Equipped with a Grothendieck Topology T
    Contents 5 Grothendieck topologies 1 6 Exactness properties 10 7 Geometric morphisms 17 8 Points and Boolean localization 22 5 Grothendieck topologies A Grothendieck site is a small category C equipped with a Grothendieck topology T . A Grothendieck topology T consists of a collec- tion of subfunctors R ⊂ hom( ;U); U 2 C ; called covering sieves, such that the following hold: 1) (base change) If R ⊂ hom( ;U) is covering and f : V ! U is a morphism of C , then f −1(R) = fg : W ! V j f · g 2 Rg is covering for V. 2) (local character) Suppose R;R0 ⊂ hom( ;U) and R is covering. If f −1(R0) is covering for all f : V ! U in R, then R0 is covering. 3) hom( ;U) is covering for all U 2 C . 1 Typically, Grothendieck topologies arise from cov- ering families in sites C having pullbacks. Cover- ing families are sets of maps which generate cov- ering sieves. Suppose that C has pullbacks. A topology T on C consists of families of sets of morphisms ffa : Ua ! Ug; U 2 C ; called covering families, such that 1) Suppose fa : Ua ! U is a covering family and y : V ! U is a morphism of C . Then the set of all V ×U Ua ! V is a covering family for V. 2) Suppose ffa : Ua ! Vg is covering, and fga;b : Wa;b ! Uag is covering for all a. Then the set of composites ga;b fa Wa;b −−! Ua −! U is covering. 3) The singleton set f1 : U ! Ug is covering for each U 2 C .
    [Show full text]