Texturing & Modeling: a Procedural Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modeling, Evaluation, Editing, and Illumination of Three Dimensional Mazes and Caves for Computer Games DISSERTATION Presented I
Modeling, Evaluation, Editing, and Illumination of Three Dimensional Mazes and Caves for Computer Games DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Matthew J. Boggus Graduate Program in Computer Science and Engineering The Ohio State University 2012 Dissertation Committee: Roger Crawfis, Advisor Han-Wei Shen Richard Parent Copyright by Matthew J. Boggus 2012 Abstract Caves are commonly used as environments in computer games. As the popularity of open world games rises, so does the demand for expansive virtual environments. To ease this cost, many tools have been developed to create and edit content for games including terrain, plants, roads, buildings, and cities. The same is not true for caves. We present data structures and algorithms to create, evaluate, edit, and illuminate three dimensional models of caves for use in computer games. Game levels can be classified according to their spatial configuration: linear, maze, or open. Caves formed by the same geological process have similar features. These define parameters that can be used to partially or fully automate the creation of cave models of different spatial configurations. Additional information about the model such as its volume, number of branching paths, and number of connected components can be used by the designer in evaluating and editing the model to meet gameplay requirements. To assist in editing of cave models we propose a new data structure and framework and compare its use to existing modeling approaches. Physically based illumination of a cave typically results in low level lighting which is not suitable for games. -
Realtime Library for Procedural Generation and Rendering of Terrains
Charles University in Prague Faculty of Mathematics and Physics MASTER THESIS Martin Kahoun Realtime library for procedural generation and rendering of terrains Department of Software and Computer Science Education Supervisor of the master thesis: Mgr. Jan Hor´aˇcek Study programme: Computer science Specialization: Software systems Prague 2013 I would like to express my gratitude to my supervisor, Mgr. Jan Hor´aˇcek, for his support, availability, help and guidance. Many thanks to my family and friends for their support and never ending patience. Very special thanks to my girlfriend who has had the patience with me and supported me to get this work done. I declare that I carried out this master thesis independently, and only with the cited sources, literature and other professional sources. I understand that my work relates to the rights and obligations under the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles University in Prague has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act. In Prague, August 2, 2013 Martin Kahoun N´azev pr´ace: Realtime library for procedural generation and rendering of terrains Autor: Bc. Martin Kahoun Katedra: Kabinet software a v´yuky informatiky Vedouc´ıdiplomov´epr´ace: Mgr. Jan Hor´aˇcek, KSVI Abstrakt: Techniky procedur´aln´ıho generov´an´ıgrafick´eho obsahu zaˇzily za po- sledn´ıch tˇricet let ˇsirok´eho uˇzit´ı. Jedn´ase o st´ale aktivn´ı oblast v´yzkumu s ap- likacemi v 3D modelovac´ımsoftware, videohr´ach a filmech. -
Fluid Flow Modelling in Houdini
Fluid Flow Modelling in Houdini Oleksandr Holub, Mykhailo Moiseienko[0000-0002-4945-202X] and Natalia Moiseienko[0000-0002-3559-6081] Kryvyi Rih State Pedagogical University, 54 Gagarin Ave., Kryvyi Rih, 50086, Ukraine [email protected] Abstract. The modern educational environment in the field of physics and information technology ensures the widespread use of visualization software for successful and deep memorization of material. There are many software for creating graphic objects for presentations and demonstrations, the most popular of which were analyzed. The work is devoted to the visualization of liquids with different viscosity parameters. The article describes the development of a fluid model in the form of a particle stream. The proposed methodology involves using the Houdini application to create interactive models. The developed model can be used in the educational process in the field of information technology. Keywords: Fluid Flow, Modelling, Houdini. 1 Introduction Computer graphics today is one of the main directions of information technologies, that develops most stormily. By means of computer graphics it is possible to do visible or visualize such phenomena and processes that cannot be seen in reality, it is possible to create evident character of that in actual fact has (for example, effects of theory of relativity, conformity to law of numerical rows and others like that) unobvious [1; 9]. Scientific visualization that sometimes is briefly named by SciVis is graphic representation of data as to the means for a study and understanding of data. Sometimes such method is named the visual analysis of data. It allows to the researcher to get an idea about the system that is studied, before by impossible methods.