An Efficient and Flexible Metadata Management Layer for Local File Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linux on the Road
Linux on the Road Linux with Laptops, Notebooks, PDAs, Mobile Phones and Other Portable Devices Werner Heuser <wehe[AT]tuxmobil.org> Linux Mobile Edition Edition Version 3.22 TuxMobil Berlin Copyright © 2000-2011 Werner Heuser 2011-12-12 Revision History Revision 3.22 2011-12-12 Revised by: wh The address of the opensuse-mobile mailing list has been added, a section power management for graphics cards has been added, a short description of Intel's LinuxPowerTop project has been added, all references to Suspend2 have been changed to TuxOnIce, links to OpenSync and Funambol syncronization packages have been added, some notes about SSDs have been added, many URLs have been checked and some minor improvements have been made. Revision 3.21 2005-11-14 Revised by: wh Some more typos have been fixed. Revision 3.20 2005-11-14 Revised by: wh Some typos have been fixed. Revision 3.19 2005-11-14 Revised by: wh A link to keytouch has been added, minor changes have been made. Revision 3.18 2005-10-10 Revised by: wh Some URLs have been updated, spelling has been corrected, minor changes have been made. Revision 3.17.1 2005-09-28 Revised by: sh A technical and a language review have been performed by Sebastian Henschel. Numerous bugs have been fixed and many URLs have been updated. Revision 3.17 2005-08-28 Revised by: wh Some more tools added to external monitor/projector section, link to Zaurus Development with Damn Small Linux added to cross-compile section, some additions about acoustic management for hard disks added, references to X.org added to X11 sections, link to laptop-mode-tools added, some URLs updated, spelling cleaned, minor changes. -
Dm-X: Protecting Volume-Level Integrity for Cloud Volumes and Local
dm-x: Protecting Volume-level Integrity for Cloud Volumes and Local Block Devices Anrin Chakraborti Bhushan Jain Jan Kasiak Stony Brook University Stony Brook University & Stony Brook University UNC, Chapel Hill Tao Zhang Donald Porter Radu Sion Stony Brook University & Stony Brook University & Stony Brook University UNC, Chapel Hill UNC, Chapel Hill ABSTRACT on Amazon’s Virtual Private Cloud (VPC) [2] (which provides The verified boot feature in recent Android devices, which strong security guarantees through network isolation) store deploys dm-verity, has been overwhelmingly successful in elim- data on untrusted storage devices residing in the public cloud. inating the extremely popular Android smart phone rooting For example, Amazon VPC file systems, object stores, and movement [25]. Unfortunately, dm-verity integrity guarantees databases reside on virtual block devices in the Amazon are read-only and do not extend to writable volumes. Elastic Block Storage (EBS). This paper introduces a new device mapper, dm-x, that This allows numerous attack vectors for a malicious cloud efficiently (fast) and reliably (metadata journaling) assures provider/untrusted software running on the server. For in- volume-level integrity for entire, writable volumes. In a direct stance, to ensure SEC-mandated assurances of end-to-end disk setup, dm-x overheads are around 6-35% over ext4 on the integrity, banks need to guarantee that the external cloud raw volume while offering additional integrity guarantees. For storage service is unable to remove log entries documenting cloud storage (Amazon EBS), dm-x overheads are negligible. financial transactions. Yet, without integrity of the storage device, a malicious cloud storage service could remove logs of a coordinated attack. -
Kernel Boot-Time Tracing
Kernel Boot-time Tracing Linux Plumbers Conference 2019 - Tracing Track Masami Hiramatsu <[email protected]> Linaro, Ltd. Speaker Masami Hiramatsu - Working for Linaro and Linaro members - Tech Lead for a Landing team - Maintainer of Kprobes and related tracing features/tools Why Kernel Boot-time Tracing? Debug and analyze boot time errors and performance issues - Measure performance statistics of kernel boot - Analyze driver init failure - Debug boot up process - Continuously tracing from boot time etc. What We Have There are already many ftrace options on kernel command line ● Setup options (trace_options=) ● Output to printk (tp_printk) ● Enable events (trace_events=) ● Enable tracers (ftrace=) ● Filtering (ftrace_filter=,ftrace_notrace=,ftrace_graph_filter=,ftrace_graph_notrace=) ● Add kprobe events (kprobe_events=) ● And other options (alloc_snapshot, traceoff_on_warning, ...) See Documentation/admin-guide/kernel-parameters.txt Example of Kernel Cmdline Parameters In grub.conf linux /boot/vmlinuz-5.1 root=UUID=5a026bbb-6a58-4c23-9814-5b1c99b82338 ro quiet splash tp_printk trace_options=”sym-addr” trace_clock=global ftrace_dump_on_oops trace_buf_size=1M trace_event=”initcall:*,irq:*,exceptions:*” kprobe_event=”p:kprobes/myevent foofunction $arg1 $arg2;p:kprobes/myevent2 barfunction %ax” What Issues? Size limitation ● kernel cmdline size is small (< 256bytes) ● A half of the cmdline is used for normal boot Only partial features supported ● ftrace has too complex features for single command line ● per-event filters/actions, instances, histograms. Solutions? 1. Use initramfs - Too late for kernel boot time tracing 2. Expand kernel cmdline - It is not easy to write down complex tracing options on bootloader (Single line options is too simple) 3. Reuse structured boot time data (Devicetree) - Well documented, structured data -> V1 & V2 series based on this. Boot-time Trace: V1 and V2 series V1 and V2 series posted at June. -
Linux Perf Event Features and Overhead
Linux perf event Features and Overhead 2013 FastPath Workshop Vince Weaver http://www.eece.maine.edu/∼vweaver [email protected] 21 April 2013 Performance Counters and Workload Optimized Systems • With processor speeds constant, cannot depend on Moore's Law to deliver increased performance • Code analysis and optimization can provide speedups in existing code on existing hardware • Systems with a single workload are best target for cross- stack hardware/kernel/application optimization • Hardware performance counters are the perfect tool for this type of optimization 1 Some Uses of Performance Counters • Traditional analysis and optimization • Finding architectural reasons for slowdown • Validating Simulators • Auto-tuning • Operating System optimization • Estimating power/energy in software 2 Linux and Performance Counters • Linux has become the operating system of choice in many domains • Runs most of the Top500 list (over 90%) on down to embedded devices (Android Phones) • Until recently had no easy access to hardware performance counters, limiting code analysis and optimization. 3 Linux Performance Counter History • oprofile { system-wide sampling profiler since 2002 • perfctr { widely used general interface available since 1999, required patching kernel • perfmon2 { another general interface, included in kernel for itanium, made generic, big push for kernel inclusion 4 Linux perf event • Developed in response to perfmon2 by Molnar and Gleixner in 2009 • Merged in 2.6.31 as \PCL" • Unusual design pushes most functionality into kernel -
Linux on IBM Z
Linux on IBM Z Pervasive Encryption with Linux on IBM Z: from a performance perspective Danijel Soldo Software Performance Analyst Linux on IBM Z Performance Evaluation _ [email protected] IBM Z / Danijel Soldo – Pervasive Encryption with Linux on IBM Z: from a performance perspective / © 2018 IBM Corporation Notices and disclaimers • © 2018 International Business Machines Corporation. No part of • Performance data contained herein was generally obtained in a this document may be reproduced or transmitted in any form controlled, isolated environments. Customer examples are without written permission from IBM. presented as illustrations of how those • U.S. Government Users Restricted Rights — use, duplication • customers have used IBM products and the results they may have or disclosure restricted by GSA ADP Schedule Contract with achieved. Actual performance, cost, savings or other results in IBM. other operating environments may vary. • Information in these presentations (including information relating • References in this document to IBM products, programs, or to products that have not yet been announced by IBM) has been services does not imply that IBM intends to make such products, reviewed for accuracy as of the date of initial publication programs or services available in all countries in which and could include unintentional technical or typographical IBM operates or does business. errors. IBM shall have no responsibility to update this information. This document is distributed “as is” without any warranty, • Workshops, sessions and associated materials may have been either express or implied. In no event, shall IBM be liable for prepared by independent session speakers, and do not necessarily any damage arising from the use of this information, reflect the views of IBM. -
Linux Performance Tools
Linux Performance Tools Brendan Gregg Senior Performance Architect Performance Engineering Team [email protected] @brendangregg This Tutorial • A tour of many Linux performance tools – To show you what can be done – With guidance for how to do it • This includes objectives, discussion, live demos – See the video of this tutorial Observability Benchmarking Tuning Stac Tuning • Massive AWS EC2 Linux cloud – 10s of thousands of cloud instances • FreeBSD for content delivery – ~33% of US Internet traffic at night • Over 50M subscribers – Recently launched in ANZ • Use Linux server tools as needed – After cloud monitoring (Atlas, etc.) and instance monitoring (Vector) tools Agenda • Methodologies • Tools • Tool Types: – Observability – Benchmarking – Tuning – Static • Profiling • Tracing Methodologies Methodologies • Objectives: – Recognize the Streetlight Anti-Method – Perform the Workload Characterization Method – Perform the USE Method – Learn how to start with the questions, before using tools – Be aware of other methodologies My system is slow… DEMO & DISCUSSION Methodologies • There are dozens of performance tools for Linux – Packages: sysstat, procps, coreutils, … – Commercial products • Methodologies can provide guidance for choosing and using tools effectively • A starting point, a process, and an ending point An#-Methodologies • The lack of a deliberate methodology… Street Light An<-Method 1. Pick observability tools that are: – Familiar – Found on the Internet – Found at random 2. Run tools 3. Look for obvious issues Drunk Man An<-Method • Tune things at random until the problem goes away Blame Someone Else An<-Method 1. Find a system or environment component you are not responsible for 2. Hypothesize that the issue is with that component 3. Redirect the issue to the responsible team 4. -
SGI™ Propack 1.3 for Linux™ Start Here
SGI™ ProPack 1.3 for Linux™ Start Here Document Number 007-4062-005 © 1999—2000 Silicon Graphics, Inc.— All Rights Reserved The contents of this document may not be copied or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED AND RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR 52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/ manufacturer is SGI, 1600 Amphitheatre Pkwy., Mountain View, CA 94043-1351. Silicon Graphics is a registered trademark and SGI and SGI ProPack for Linux are trademarks of Silicon Graphics, Inc. Intel is a trademark of Intel Corporation. Linux is a trademark of Linus Torvalds. NCR is a trademark of NCR Corporation. NFS is a trademark of Sun Microsystems, Inc. Oracle is a trademark of Oracle Corporation. Red Hat is a registered trademark and RPM is a trademark of Red Hat, Inc. SuSE is a trademark of SuSE Inc. TurboLinux is a trademark of TurboLinux, Inc. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd. SGI™ ProPack 1.3 for Linux™ Start Here Document Number 007-4062-005 Contents List of Tables v About This Guide vii Reader Comments vii 1. Release Features 1 Feature Overview 2 Qualified Drivers 3 Patches and Changes to Base Linux Distributions 3 2. -
On Access Control Model of Linux Native Performance Monitoring Motivation
On access control model of Linux native performance monitoring Motivation • socialize Perf access control management to broader community • promote the management to security sensitive production environments • discover demand on extensions to the existing Perf access control model 2 Model overview • Subjects: processes • Access control: • superuser root • LSM hooks for MAC (e.g. SELinux) subjects • privileged user groups • Linux capabilities (DAC) • unprivileged users • perf_event_paranoid sysctl access and • Objects: telemetry data • Resource control: • tracepoints, OS events resource control • CPU time: sample rate & throttling • CPU • Memory: perf_events_mlock_kb sysctl • Uncore Objects • Other HW • File descriptors: ulimit -n (RLIMIT_NOFILE) system • Scope • Level user cgroups • process • user mode • cgroups • kernel kernel • system process • hypervisor hypervisor 3 Subjects Users • root, superuser: • euid = 0 and/or CAP_SYS_ADMIN • unprivileged users: • perf_event_paranoid sysctl • Perf privileged user group: -rwxr-x--- 2 root perf_users 11M Oct 19 15:12 perf # getcap perf perf = cap_perfmon,…=ep root unprivileged Perf users 4 Telemetry, scope, level Telemetr Objects: SW, HW telemetry data y Uncore • tracepoints, OS events, eBPF • CPUs events and related HW CPU • Uncore events (LLC, Interconnect, DRAM) SW events • Other (e.g. FPGA) process cgroup user Scope: Level: system kernel • process • user hypervisor • cgroups • kernel Scope Leve • system wide • hypervisor l 5 perf: interrupt took too long (3000 > 2000), lowering kernel.perf_event_max_sample_rate -
Kernel Runtime Security Instrumentation Process Is Executed
Kernel Runtime Security Instrumentation KP Singh Linux Plumbers Conference Motivation Security Signals Mitigation Audit SELinux, Apparmor (LSMs) Perf seccomp Correlation with It's bad, stop it! maliciousness but do not imply it Adding a new Signal Signals Mitigation Update Audit Audit (user/kernel) SELinux, Apparmor (LSMs) to log environment Perf variables seccomp Security Signals Mitigation Audit SELinux, Apparmor (LSMs) Perf seccomp Update the mitigation logic for a malicious actor with a known LD_PRELOAD signature Signals ● A process that executes and deletes its own executable. ● A Kernel module that loads and "hides" itself ● "Suspicious" environment variables. Mitigations ● Prevent mounting of USB drives on servers. ● Dynamic whitelist of known Kernel modules. ● Prevent known vulnerable binaries from running. How does it work? Why LSM? ● Mapping to security behaviours rather than the API. ● Easy to miss if instrumenting using syscalls (eg. execve, execveat) ● Benefit the LSM ecosystem by incorporating feedback from the security community. Run my code when a Kernel Runtime Security Instrumentation process is executed /sys/kernel/security/krsi/process_execution my_bpf_prog.o (bprm_check_security) bpf [BPF_PROG_LOAD] open [O_RDWR] securityfs_fd prog_fd bpf [BPF_PROG_ATTACH] LSM:bprm_check_security (when a process is executed) KRSI's Hook Other LSM Hooks Tying it all Together Reads events from the buffer and processes them Userspace further Daemon/Agent User Space Buffer Kernel Space eBPF programs output to a buffer process_execution -
Mobile Video Ecosystem and Geofencing for Licensed Content Delivery
Mobile Video Ecosystem and Geofencing for Licensed Content Delivery TABLE OF CONTENTS Executive Summary ...................................................................................................................................... 2 1. Introduction ............................................................................................................................................... 4 2. Video Delivery Challenges and Optimizations .......................................................................................... 6 2.1 Delivery technology ............................................................................................................................. 7 2.2 Video Codecs ...................................................................................................................................... 9 2.3 Codec comparison ............................................................................................................................... 9 2.4 Congestion Control Algorithm Enhancements .................................................................................. 11 3. Managing Video Based on Network Load............................................................................................... 12 3.1 Radio Congestion Aware Function (RCAF) ...................................................................................... 12 3.2 Mobile Throughput Guidance ............................................................................................................ 13 3.3 Self Organizing -
Implementing SCADA Security Policies Via Security-Enhanced Linux
Implementing SCADA Security Policies via Security-Enhanced Linux Ryan Bradetich Schweitzer Engineering Laboratories, Inc. Paul Oman University of Idaho, Department of Computer Science Presented at the 10th Annual Western Power Delivery Automation Conference Spokane, Washington April 8–10, 2008 1 Implementing SCADA Security Policies via Security-Enhanced Linux Ryan Bradetich, Schweitzer Engineering Laboratories, Inc. Paul Oman, University of Idaho, Department of Computer Science Abstract—Substation networks have traditionally been and corporate IT networks are also fundamentally different. isolated from corporate information technology (IT) networks. SCADA protocols provide efficient, deterministic communi- Hence, the security of substation networks has depended heavily cations between devices [3] [4]. Corporate IT protocols upon limited access points and the use of point-to-point supervisory control and data acquisition (SCADA)-specific generally provide reliable communications over a shared protocols. With the introduction of Ethernet into substations, communications channel. pressure to reduce expenses and provide Internet services to Security-Enhanced Linux was initially developed by the customers has many utilities connecting their substation National Security Agency to introduce a mandatory access networks and corporate IT networks, despite the additional control (MAC) solution into the Linux® kernel [5]. The security risks. The Security-Enhanced Linux SCADA proxy was original proof-of-concept Security-Enhanced Linux SCADA introduced -
Embedded Linux Conference Europe 2019
Embedded Linux Conference Europe 2019 Linux kernel debugging: going beyond printk messages Embedded Labworks By Sergio Prado. São Paulo, October 2019 ® Copyright Embedded Labworks 2004-2019. All rights reserved. Embedded Labworks ABOUT THIS DOCUMENT ✗ This document is available under Creative Commons BY- SA 4.0. https://creativecommons.org/licenses/by-sa/4.0/ ✗ The source code of this document is available at: https://e-labworks.com/talks/elce2019 Embedded Labworks $ WHOAMI ✗ Embedded software developer for more than 20 years. ✗ Principal Engineer of Embedded Labworks, a company specialized in the development of software projects and BSPs for embedded systems. https://e-labworks.com/en/ ✗ Active in the embedded systems community in Brazil, creator of the website Embarcados and blogger (Portuguese language). https://sergioprado.org ✗ Contributor of several open source projects, including Buildroot, Yocto Project and the Linux kernel. Embedded Labworks THIS TALK IS NOT ABOUT... ✗ printk and all related functions and features (pr_ and dev_ family of functions, dynamic debug, etc). ✗ Static analysis tools and fuzzing (sparse, smatch, coccinelle, coverity, trinity, syzkaller, syzbot, etc). ✗ User space debugging. ✗ This is also not a tutorial! We will talk about a lot of tools and techniches and have fun with some demos! Embedded Labworks DEBUGGING STEP-BY-STEP 1. Understand the problem. 2. Reproduce the problem. 3. Identify the source of the problem. 4. Fix the problem. 5. Fixed? If so, celebrate! If not, go back to step 1. Embedded Labworks TYPES OF PROBLEMS ✗ We can consider as the top 5 types of problems in software: ✗ Crash. ✗ Lockup. ✗ Logic/implementation error. ✗ Resource leak. ✗ Performance.