No. 2990907 ACOUSTIC FILTER

Total Page:16

File Type:pdf, Size:1020Kb

Load more

July 4, 1961 W. S. EVERETT 2,990,907 ACOUSTIC FILTER Filed June 11, 1959 3 Sheets-Sheet 1 74 40 0.---.>2 .58 to 70 "1l!I.~a--34 22. /8 20 , 30 28 _~X 70 24 ~~~~~~~f;:;26 \:l Z 58 ~2B.6. 32 =- 76 y-r~.z. 77 J~ 00 7- rf ~8 /' oX. / 54 / 0 I ~' 40 7~- 58 70 8'1 July 4, 1961 W. S. EVERETT 2,990,907 ACOUSTIC FILTER Filed June 11, 1959 3 Sheets-Sheet 2 120 104~~--;18~ INVE IV TOR. 140 ILH£L~. ErR.£TT :By ~~ ATTCRN£'t, July 4, 1961 W. S. EVERETT 2,990,907 ACOUSTIC FILTER Filed June 11, 1959 3 Sheets-Sheet 3 o o No o (\,J o , .... 0 In° '\ 0;)2 I""'" I\. t- ID ....... ~ '\ \Cl ~ Q , I\. \ Z "- ", 0 I\. ~ tJ ~ ~ ~ I\. ru U) ~ " 1\ IL1 -r-J 1'\ ll. c:r 1\ r\ V'J '\ -OLiJ 1110,.J C()~v t- ~ lD 1..1 U) Z -t >- v II) Z UJ 1/ ::> (\j C!J IIJ \ J Q: I \ IJ.. I '" 1'0... I ........ II . I--.. I--~ ~ 1....- .... ~ 1/ IJ INVENTOR WILHELI'1 S. EVERETT B)/ ~t1~ ~ ATTORNEY, 2,990,907 United States Patent Office Patented July 4, 1961 1 2 acoustic spectrum without introducing any substantial 2,990,907 back pressure into the system. ACOUSTIC FILTER Wilhelm S. Everett, 1349, E. Main St., Santa P.aula, Calif. I have devised an acoustic mute which absorbs se­ Filed June 11, 1959, Ser. No. 819,779 lected frequencies of the acoustic speotrum, which may 6 Claims. (CI. 181-54) 5 be at the resonance frequencies of ,the acoustic system into which it is placed. Also, especially where the acous­ This invention relates to an acoustic filter to be em­ tic spectrum contains a material proportion of the acous­ ployed in connection with a stream of compressible fluid, ,tic energy in relatively low frequencies and/or relatively to limit or decrease the fraction of the energy of the high frequencies, I may cut off such high frequency or stream present in frequencies in the audible range. 10 low frequency wave or both low frequency and high fre­ This application is a continuation in part of applicant's quency waves. By so doing I may obtain a more uni­ application Serial No. 526,725, filed August 5, 1955, form distribution of acoustic energy over the whole acous­ which is now abandoned. tic spectrum. I accomplish these results by introducing As is well known, streams of compressible fluids, such into the system acoustic resonators whose frequency re- ,as gases flowing in confined ohannels, such as pipe sys­ 15 sponse is in 'the frequency region in which noise sup­ ,tems, upon intake from and discharge into the atmos­ pression is desired. phere generate a great deal of noise depending on their These ,acoustic resonators have a capacitance and in­ velocity and physical characteristics and on ,the physical ductance, using the language of the eleotrical analogies characteristics of the engines, pumps or compressors in employed in acoustic theory, so that their natural fre- the system. Additionally, the 'acoustic vibrations tend to 20 quencies 'are such that they will absorb the energy of the generate mechanical vibration in the system with conse­ acoustic waves at the desired location in the acoustic quent damage which frequently may be quite severe. spectrum and in the region of acoustic repsonse of the The frequency and wave shape of Vhe energy input into resonators, and do not introduce any substantial resistance the flowing system also modifies the nature of the acoustic to the flow of the fluid whose noise is to be suppressed. energy in the fluid stream and the nature of its acoustic 25 To accomplish these results! place in the flow path of 8pectrum. the fluid, an acoustic resonator in the form of a closed The acoustic problem of noise and energy loss due to chamber, having an entrance port or por,ts so positioned noise in such systems where this problem has been found with respect to the direction of flow of the fluid so that most aggravated has resulted in the application of various the acoustic wave pressure may be cOIll.!Ilunicated from muffler devices, which in principle depend on absorbing 30 the flowing stream directly through ,the port. The cham­ the sound by reducing the pressure peaks, i.e., the ampli­ ber being full of the fluid is thus subject to compression tude of the acoustic wave energy in the flowing stream and rarefaction induced by the propagation of the wave without substantial change in the acoustic spectrum. It energy through the port. The gas in the chamber acts is conventional in acoustic theory to consider acoustic like a compressible spring of frequency response deter- systems in terms analogous to electrical circuits. Viewed 35 mined by the free volume of the chamber and the area in this manner these devices in various forms· introduce and geometry of the port entrance. a resistance in the circuit to cause a damping of the The filter thus may act to reduce the magnitude of the wave energy by reducing the amplitude of the waves. positive and negative peak frequencies of acoustic waves This resistance may be a series resistance as when baffling within the range of frequency to which the filter responds of various sorts in introduced into the flowing stream, 40 without introducing any substantial back pressure into or a pamllel resistance as where the pressure pulses are the system. Since the noise level is determined by the permitted to escape in a direction perpendicular to the magnitude of ,the resonance peaks, the reduction in the flowing stream into a baffling chamber filled with sound energy in these peaks causes a reduotion in the noise absorbing material and pressure is reduced by the flow level of the stream of fluid without requiring reduction of the stream in and out of the baffling chamber. 45 in the amplitude of the waves across the entire acoustic Studies which I have made of the energy distribution spectrum as is the case in prior art damping known to in the acoustic spectrum of such flowing fluid streams applicant. Such filters are particularly useful when it is show that these streams resonate in certain frequency desired to selectively absorb relatively low frequencies. ranges. Where I desire to add to the aotion of the ,low frequency In all such previously mentioned prior art and other 50 response acoustic filter, one having a higher frequency similar systems, the sound absorption is not selective, absorption of the acoustic spectrum, I use as part of the since operating merely to introduce a resistance, the na­ aforesaid filter or as a separate element an acoustic filter ture of the acoustic frequency distribution in the aCOllS,tic having a relatively higher frequency response. In order spectrum is substantially unaltered but the energy in the 55 to obtain the proper frequency response characteristics various wave lengths are reduced by reason of the energy of ,the acoustic filter at the selected high frequencies, the loss in overcoming this resistance. In order to reduce ratio of the port area to the volume of the acoustic filter the pressure peaks of the acoustic waves in the region is preferably made greater than for the filter of lower of resonance, considerable resistance is required. frequency respouse. In order ,to reduce the volume of The acoustic energy loss thus results in a large pressure the filter I introduce a filter element so as to divide the drop in the system, introducing a substantial back pres­ 60 chamber into a plurality of small conduits which com­ sure and a drop in the efficiency of the system. Addi­ municate with the entrance ports, and if desired, also tionally, frequently these systems introduce reflective with each other. In this way I reduce the free volume surfaces, which because of interference phenomena gen­ of the acoustic filter chamber to obtain the proper ratio erate standing waves and thus also genemte localized of the port area to the free volume in communication areas of high pressure which add to the back pressure 65 therewith. in the system. I also plaoe the port area so that the acoustic wave pres­ Instead of relying solely or in the main on the sound sure may be communicated to and through the ports into absorbing effeot of acoustic resistance elements, I so the free volume of the filled acoustic filter. In a pre­ modify the acoustic characteristics of the pipe line at the 70 ferred embodiment, the flow of the fluid is made to pass point where the acoustic energy is to be modified so as over each port, for example, in a direction parallel to the to selectively absorb the acoustic energy from the entire plane of the port entrance. 'I1he characteristics of this 2',990,907 3 4 acoustic filter are that it absorbs high frequency acoustic connected to the outer periphery thereof an annular energy and has a high frequency cut-off point. "pancake" type c6JisfriiCtion generally represented by the When the relatively low frequency filters are used in numeral 24, also preferably formed of sheet metal. Said conjunction with the high frequency filter described pancake is composed of an annular chamber 26 having a above, I may attenuate and suppress the low and medium 1) rounded or bumped annular wall- 28, the inner periphery frequencies of the flowing fluid and the high frequency of which is welded or otherwise suitablY connected at 30 acoustic waves, and thus obtain a large ;reduction in the to the wall of tube 12; The outer periphery of the noise level of the flowing stream without introducing any bumped wall 28 is bent outwardly for a short distance substantial back pressure into the system.
Recommended publications
  • Ultrasonic Concentration of Microorganisms

    Ultrasonic Concentration of Microorganisms

    University of Kentucky UKnowledge Theses and Dissertations--Biosystems and Agricultural Engineering Biosystems and Agricultural Engineering 2012 Ultrasonic Concentration of Microorganisms Samuel J. Mullins University of Kentcuky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Mullins, Samuel J., "Ultrasonic Concentration of Microorganisms" (2012). Theses and Dissertations-- Biosystems and Agricultural Engineering. 7. https://uknowledge.uky.edu/bae_etds/7 This Master's Thesis is brought to you for free and open access by the Biosystems and Agricultural Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Biosystems and Agricultural Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies. I retain all other ownership rights to the copyright of my work.
  • Generation of Sub-Wavelength Acoustic Stationary Waves in Microfluidic Platforms

    Generation of Sub-Wavelength Acoustic Stationary Waves in Microfluidic Platforms

    GENERATION OF SUB-WAVELENGTH ACOUSTIC STATIONARY WAVES IN MICROFLUIDIC PLATFORMS: THEORY AND APPLICATIONS TO THE CONTROL OF MICRO-NANOPARTICLES AND BIOLOGICAL ENTITIES. A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Muhammet Kursad Araz February 2010 c 2010 Muhammet Kursad Araz ALL RIGHTS RESERVED GENERATION OF SUB-WAVELENGTH ACOUSTIC STATIONARY WAVES IN MICROFLUIDIC PLATFORMS: THEORY AND APPLICATIONS TO THE CONTROL OF MICRO-NANOPARTICLES AND BIOLOGICAL ENTITIES. Muhammet Kursad Araz, Ph.D. Cornell University 2010 Presented in this dissertation are the theoretical modeling and experimental re- sults of a novel method for manipulating micro and nanoparticles in an acoustically actuated microfluidic glass capillary. Here, the PZT (Lead Zirconate Titanate)- glass capillary actuator mechanism performs bioanalytical methods such as collec- tion, separation and mixing at microscale, at low voltage drives, enabling produc- tion of battery operated inexpensive portable microfluidic systems. Analytical and finite element modeling of the vibrational modes of the fluid filled thick walled cylindrical capillary has been also studied. Torsional, longitudi- nal and flexural modes and their dispersion relationships are presented. Through the excitation of the various vibrational modes of the silica capil- lary, sub-wavelength acoustic pressure modes in the microfluidic cavity are formed. More than 20 such sub-harmonic modes are generated harmonically in the 20kHz- 2MHz regime whereas naturally occurring radial modes have a cut off frequency around 9 MHz. The amplitude of these stationary acoustic pressure fields are high enough to generate nonlinear acoustic forces and streaming effects for micro and nanoparticle manipulation.
  • Structural Acoustic Coupling Resonance of Hindu Temples

    STRUCTURAL ACOUSTIC COUPLING RESONANCE OF HINDU TEMPLES 1R WIJESIRIWARDANA, 2M. VIGNARAJAH, 3P.KATHIRGAMANATHAN, 4K. WALGAMA 1,2,3Faculty of Engineering University of Jaffna Sri Lanka, 4Faculty of Engineering University of Peradeniya Sri Lanka E-mail: [email protected], [email protected], [email protected], [email protected] Abstract- Some ancient constructions over the world exhibit acoustic resonance chambers [1, 7]. Acoustic resonance of Pyramids [1], Stupas [2,6,7], Cathedrals [3,4,12] and Mosques [5] have been studied and they closely resembles the Alpha, Theta and Gamma waves of EEG spectrum [11]. Moreover, these EEG frequencies corresponds to the alert calmness that conducive for mental composure and general well being [6, 7]. Research has also showed that these frequencies are also closer to the Shumann resonance frequencies [9,10]. Even though, acoustic resonances are in the mechanical vibration domain the researchers have found these vibration energies may have transformed into equivalent electromagnetic frequencies (EEG and Shumann bandwidth) [1,6]. This conversion is mostly may have achieved in ancient resonance chambers by properly using special quartz crystals [2,6,7] and getting them to vibrate by acoustic energies. In addition, some of these acoustic resonance chambers also have vibrating frequencies which are octaves of 528 Hz and 432 Hz [13]. These frequencies are also known to be healing frequencies commonly used in sound therapies [14]. Limited research has been done to understand the acoustic resonance chambers of Hindu Temples. Two types of acoustic resonance chambers can be found in Hind Temples. The first one is the “Moolastana” chamber and the other is the inner core (path).
  • W O 2019/118921 Al 20 June 2019 (20.06.2019) W IPO I PCT

    W O 2019/118921 Al 20 June 2019 (20.06.2019) W IPO I PCT

    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property (1) Organization11111111111111111111111I1111111111111i1111liiiii International Bureau (10) International Publication Number (43) International Publication Date W O 2019/118921 Al 20 June 2019 (20.06.2019) W IPO I PCT (51) International Patent Classification: (72) Inventors: LIPKENS, Bart; 380 Main Street, Wilbraham, H04R 3/04 (2006.01) H04R 17/00 (2006.01) MA 01095 (US). MUSIAK, Ronald; 380 Main Street, H04R 1/24 (2006.01) Wilbraham, MA 01095 (US). ARTIS, John; 380 Main (21) International Application Number: Street, Wilbraham, MA01095 (US). PCT/US2018/065839 (74) Agent: KENNEDY, Brendan J.; FloDesign Sonics, Inc., (22) International Filing Date: 380 Main Street, Wilbraham, MA 01095 (US). 14 December 2018 (14.12.2018) (81) Designated States (unless otherwise indicated, for every (25) Filing Language• English kind ofnational protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (30)PriorityData: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (30)/Priorit : 14 December 2017 (14.12.2017) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, LY, MA, MD, ME, 62/614,354 05 January 2018 (05.01.2018) US KR, KW, KZ, LA, LC, LK, LR, LS, LU, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (71) Applicant: FLODESIGN SONICS, INC. [US/US]; 380 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, Main Street, Wilbraham, MA 01095 (US).
  • Physics I Notes: Chapter 13 – Sound

    Physics I Notes: Chapter 13 – Sound

    Physics I Notes: Chapter 13 – Sound I. Properties of Sound A. Sound is the only thing that one can hear! Where do sounds come from?? Sounds are produced by VIBRATING or OSCILLATING OBJECTS! Sound is a longitudinal wave produced by a vibrating source that causes regular variations in air pressure ( P in diagram above). B. Audible range of sound for most young people is 20 Hz to 20,000 Hz 1. Infrasonic waves are below 20 Hz and ultrasonic waves are above 20,000 Hz. Infra- and ultra- have to do with frequencies below and above the normal range of human hearing. This is NOT to be confused with subsonic and supersonic…these terms have to do with the speeds of moving objects. For example: a subsonic car travels slower than the speed of sound in air, while a supersonic jet airplane travels faster than the speed of sound in air. C. Frequency determines the pitch – how high or low we perceive the sound to be. The higher the frequency, the higher the pitch you will hear. D. Loudness depends upon relative amplitude of the wave E. Intensity of a sound wave is the rate of energy flow (or Power) through a given area. Sound waves propagate spherically outward from the source. Since the original amount of energy is spread out over a larger amount of surface area, the intensity of sound decreases by the inverse square law as it moves away from the source. Power Intensity = 4πr 2 The value of the intensity of sound determines its loudness or volume, but the relationship is NOT directly proportional.
  • Estimation of the Acoustic Waste Energy Harvested from Diesel Single Cylinder Engine Exhaust System

    Estimation of the Acoustic Waste Energy Harvested from Diesel Single Cylinder Engine Exhaust System

    Estimation of the Acoustic Waste Energy Harvested from Diesel Single Cylinder Engine Exhaust System Claudiu Golgot a, Nicolae Filip b and Lucian Candale Department of Automotive Engineering and Transport, Technical University of Cluj-Napoca, Romania Keywords: Noise, Diesel, Acoustic, Energy Harvesting, FFT, Resonant Frequency. Abstract: Noise generated in the operation of an internal combustion engine is an energy waste that produces noise pollution. Recovering some of this energy and transforming it into another form of usable energy brings significant benefits. We proposed to develop a device to recover this energy waste produced by the internal combustion engines, in the gases changing process. The developed energy recovery system is based on the Helmholtz resonator principle. For the conversion of acoustic waves into electricity, we used an audio speaker as a low-cost electromagnetic transducer located at the end of the resonant chamber. By audio playback of the acoustic signal recorded at the engine exhaust, we measured the electricity generated with the proposed recovery system. We found that the noise level measured at the exhaust depending on the engine speed range, follows a linear distribution law, instead, the harvested electric power varies nonlinearly. To find out the cause of the electric power variation, we performed a detailed FFT analysis. We found that at most engine speeds, the dominant amplitudes in the frequency spectrum are close to the resonant frequency of the system. With the proposed conversion system, we obtained a maximum value of the harvested electric power of 165 µW. 1 INTRODUCTION The conversion of acoustic energy is also found in research on thermo-acoustic generators, they Road vehicles are generally recognized as a major transform thermal energy into acoustic energy and source of urban noise pollution, mainly due to the then into electricity using an acoustic-electric noise produced by the exhaust system.
  • Principles of Sound Resonance in Human Whistling Using Physical Models of Human Vocal Tract

    Principles of Sound Resonance in Human Whistling Using Physical Models of Human Vocal Tract

    Acoust. Sci. & Tech. 37, 2 (2016) #2016 The Acoustical Society of Japan Principles of sound resonance in human whistling using physical models of human vocal tract Toshiro Shigetomi and Mikio Morià Graduate School of Engineering, University of Fukui, 3–9–1 Bunkyo, Fukui, 910–8507 Japan (Received 16 June 2015, Accepted for publication 28 October 2015) Keywords: Whistling, Human vocal tract modeling, Helmholtz resonance, Air-column resonance PACS number: 43.64.Yp [doi:10.1250/ast.37.83] 1. Introduction produce the vocal tract forms corresponding to the five Whistling competitions have been held regularly in Japan Japanese vowels through changes in the plate combination. in recent years, and some prize-winning whistlers have Because the shape of the mouth at the time of whistling is established music schools to teach musical whistling. How- considered to be close to the mouth structure required for the ever, no theoretical textbook on whistling has been written pronunciation of the vowel /u/, Mori et al. reported adjust- thus far, and the principles of human whistling sound ments made to physical models to achieve this shape [5]. production are relatively unknown. A good understanding of Following this approach, the vocal cord parts in the model these principles would be very beneficial to both the trainer used in this study were detached and various components and the trainee. (described below) were added. By employing simplified Previously, Rayleigh reported that the whistling frequency models, Mori et al. also demonstrated that the resonant is determined by the Helmholtz resonator frequency in the frequency and mode in human whistling involve not only the mouth cavity.
  • D. Guicking Patents on Active Control of Sound and Vibration – An

    D. Guicking Patents on Active Control of Sound and Vibration – An

    D. Guicking Patents on Active Control of Sound and Vibration { an Overview { Second revised and enlarged edition May 2009 Contact: Dr. Dieter Guicking Schl¨ozerweg6 37085 G¨ottingen Germany Tel.: +49-551-4 61 06 E-Mail: Dieter.Guicking(at)phys.uni-goettingen.de Homepage: http://www.guicking.de/dieter Emeritus member of: Drittes Physikalisches Institut Universit¨atG¨ottingen Friedrich-Hund-Platz 1 37077 G¨ottingen Germany ⃝c Dr. Dieter Guicking 2009 PREFACE Patent titles and patent abstracts often are not really informative. During my work on a patent bibliography it appeared to me therefore reasonable to write this text. Based on about 2060 patent families out of which about 1740 have been selected (removing redundancies and less important ones), this text gives an overview of old and new patents on Active Noise and Vibration Control (ANVC), including related fields such as algorithms, sound design, active flow control, transducers, etc. The patents are grouped in 17 sections which are subdivided into subsections if appropriate. Some emphasis is laid upon patents on algorithms (Section 2). The References in Section 18 are given in short form; concerning the citation style, see [1]. This text is the second revised and enlarged edition of the first version, published in January 2001 [2, 3]. Although I have done my best to deliver a reliable and useful document, I cannot take any re- sponsibility for the correctness and completeness of the data given. Gottingen,¨ April 2009 Dieter Guicking 3 CONTENTS 1. Introduction . 5 2. Algorithms. 5 3. ANC in Ducts and Mufflers . 14 3.1. Ducts .
  • Structural Acoustic Coupling Resonance of Hindu Temples

    Structural Acoustic Coupling Resonance of Hindu Temples

    International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-5, Issue-7, Jul.-2017 http://iraj.in STRUCTURAL ACOUSTIC COUPLING RESONANCE OF HINDU TEMPLES 1R WIJESIRIWARDANA, 2M. VIGNARAJAH, 3P.KATHIRGAMANATHAN, 4K. WALGAMA 1,2,3Faculty of Engineering University of Jaffna Sri Lanka, 4Faculty of Engineering University of Peradeniya Sri Lanka E-mail: [email protected], [email protected], [email protected], [email protected] Abstract- Some ancient constructions over the world exhibit acoustic resonance chambers [1, 7]. Acoustic resonance of Pyramids [1], Stupas [2,6,7], Cathedrals [3,4,12] and Mosques [5] have been studied and they closely resembles the Alpha, Theta and Gamma waves of EEG spectrum [11]. Moreover, these EEG frequencies corresponds to the alert calmness that conducive for mental composure and general well being [6, 7]. Research has also showed that these frequencies are also closer to the Shumann resonance frequencies [9,10]. Even though, acoustic resonances are in the mechanical vibration domain the researchers have found these vibration energies may have transformed into equivalent electromagnetic frequencies (EEG and Shumann bandwidth) [1,6]. This conversion is mostly may have achieved in ancient resonance chambers by properly using special quartz crystals [2,6,7] and getting them to vibrate by acoustic energies. In addition, some of these acoustic resonance chambers also have vibrating frequencies which are octaves of 528 Hz and 432 Hz [13]. These frequencies are also known to be healing frequencies commonly used in sound therapies [14]. Limited research has been done to understand the acoustic resonance chambers of Hindu Temples.
  • Lecture 6: Waves in Strings and Air

    Lecture 6: Waves in Strings and Air

    Matthew Schwartz Lecture 6: Waves in strings and air 1 Introduction In Lecture 4, we derived the wave equation for two systems. First, by stringing together masses and springs and taking the continuum limit, we found ∂2 ∂2 v2 A(x,t)=0 (1) ⇒ ∂t2 − ∂x2 where A(x,t) is the displacement from equilibrium of the mass at position x. These are longitu- dinal waves. In this equation, for waves in a solid, the wave speed is E v = (2) µ r where E is the elastic modulus and µ is the density per unit length. Now we consider two more cases: transverse oscillations on a string and longitudinal motion of air molecules (sound waves). 2 Transverse oscillations Consider a string of tension T . We define the amplitude of the string at a point x at time t as A(x,t). In this section, we’ll sometimes write A(x, t) just as A(x) to avoid clutter. Let us treat the string as a bunch of massless test probes connected by a elastic strings. Then we can draw the picture as What is the force acting on the test mass at position x (in red)? First, consider the downward component of the force pulling on the test mass at x from the mass to the left (at x ∆x). We can draw a triangle: − The force is given by ∆A Fdownwards, from left mass = T sinθ = T (3) √∆A2 + ∆x2 If the system is close to equilibrium, then the slope will be small. That is, ∆A ∆x.