University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 2014 On high order finite-difference metric discretizations satisfying GCL on moving and deforming grids Bjorn Sjögreen Lawrence Livermore National Laboratories,
[email protected] Helen C. Yee NASA Ames Research Center,
[email protected] Marcel Vinokur NASA Ames Research Center Follow this and additional works at: http://digitalcommons.unl.edu/nasapub Sjögreen, Bjorn; Yee, Helen C.; and Vinokur, Marcel, "On high order finite-difference metric discretizations satisfying GCL on moving and deforming grids" (2014). NASA Publications. 272. http://digitalcommons.unl.edu/nasapub/272 This Article is brought to you for free and open access by the National Aeronautics and Space Administration at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in NASA Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Computational Physics 265 (2014) 211–220 Contents lists available at ScienceDirect Journal of Computational Physics www.elsevier.com/locate/jcp Short note On high order finite-difference metric discretizations ✩ satisfying GCL on moving and deforming grids , Björn Sjögreen a 1, H.C. Yee b, Marcel Vinokur b a Lawrence Livermore National Laboratory, Livermore, CA 94551, United States b NASA Ames Research Center, Moffett Field, CA 94035, United States article info abstract Article history: In this note we generalize our previous treatment of the discretizations of geometric Received 25 July 2013 conservation laws on steady grids (Vinokur and Yee, 2000) to general time dependent grids. Accepted 28 January 2014 The commutative property of mixed difference operators is generalized to apply to time Available online 12 February 2014 metrics and Jacobians.