On the Khovanov and Knot Floer Homologies of Quasi-Alternating Links
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Khovanov Homology of Rational Tangles
The Khovanov Homology of Rational Tangles Benjamin Thompson A thesis submitted for the degree of Bachelor of Philosophy with Honours in Pure Mathematics of The Australian National University October, 2016 Dedicated to my family. Even though they’ll never read it. “To feel fulfilled, you must first have a goal that needs fulfilling.” Hidetaka Miyazaki, Edge (280) “Sleep is good. And books are better.” (Tyrion) George R. R. Martin, A Clash of Kings “Let’s love ourselves then we can’t fail to make a better situation.” Lauryn Hill, Everything is Everything iv Declaration Except where otherwise stated, this thesis is my own work prepared under the supervision of Scott Morrison. Benjamin Thompson October, 2016 v vi Acknowledgements What a ride. Above all, I would like to thank my supervisor, Scott Morrison. This thesis would not have been written without your unflagging support, sublime feedback and sage advice. My thesis would have likely consisted only of uninspired exposition had you not provided a plethora of interesting potential topics at the start, and its overall polish would have likely diminished had you not kept me on track right to the end. You went above and beyond what I expected from a supervisor, and as a result I’ve had the busiest, but also best, year of my life so far. I must also extend a huge thanks to Tony Licata for working with me throughout the year too; hopefully we can figure out what’s really going on with the bigradings! So many people to thank, so little time. I thank Joan Licata for agreeing to run a Knot Theory course all those years ago. -
On Spectral Sequences from Khovanov Homology 11
ON SPECTRAL SEQUENCES FROM KHOVANOV HOMOLOGY ANDREW LOBB RAPHAEL ZENTNER Abstract. There are a number of homological knot invariants, each satis- fying an unoriented skein exact sequence, which can be realized as the limit page of a spectral sequence starting at a version of the Khovanov chain com- plex. Compositions of elementary 1-handle movie moves induce a morphism of spectral sequences. These morphisms remain unexploited in the literature, perhaps because there is still an open question concerning the naturality of maps induced by general movies. In this paper we focus on the spectral sequences due to Kronheimer-Mrowka from Khovanov homology to instanton knot Floer homology, and on that due to Ozsv´ath-Szab´oto the Heegaard-Floer homology of the branched double cover. For example, we use the 1-handle morphisms to give new information about the filtrations on the instanton knot Floer homology of the (4; 5)-torus knot, determining these up to an ambiguity in a pair of degrees; to deter- mine the Ozsv´ath-Szab´ospectral sequence for an infinite class of prime knots; and to show that higher differentials of both the Kronheimer-Mrowka and the Ozsv´ath-Szab´ospectral sequences necessarily lower the delta grading for all pretzel knots. 1. Introduction Recent work in the area of the 3-manifold invariants called knot homologies has il- luminated the relationship between Floer-theoretic knot homologies and `quantum' knot homologies. The relationships observed take the form of spectral sequences starting with a quantum invariant and abutting to a Floer invariant. A primary ex- ample is due to Ozsv´athand Szab´o[15] in which a spectral sequence is constructed from Khovanov homology of a knot (with Z=2 coefficients) to the Heegaard-Floer homology of the 3-manifold obtained as double branched cover over the knot. -
Ciprian Manolescu
A combinatorial approach to Heegaard Floer invariants Ciprian Manolescu UCLA July 5, 2012 Ciprian Manolescu (UCLA) Combinatorial HF Theory July 5, 2012 1 / 34 Motivation (4D) Much insight into smooth 4-manifolds comes from PDE techniques: gauge theory and symplectic geometry. Donaldson (1980’s): used the Yang-Mills equations to get constraints on the intersection forms of smooth 4-manifolds, etc. Solution counts −→ Donaldson invariants, able to detect exotic smooth structures on closed 4-manifolds. Seiberg-Witten (1994): discovered the monopole equations, which can replace Yang-Mills for most applications, and are easier to study. Solution counts −→ Seiberg-Witten invariants. Ozsv´ath-Szab´o (2000’s): developed Heegaard Floer theory, based on counts of holomorphic curves in symplectic manifolds. Their mixed HF invariants of 4-manifolds are conjecturally the same as the Seiberg-Witten invariants, and can be used for the same applications (in particular, to detect exotic smooth structures). Ciprian Manolescu (UCLA) Combinatorial HF Theory July 5, 2012 2 / 34 Motivation (3D) All three theories (Yang-Mills, Seiberg-Witten, Heegaard-Floer) also produce invariants of closed 3-manifolds, in the form of graded Abelian groups called Floer homologies. These have applications of their own, e.g.: What is the minimal genus of a surface representing a given homology class in a 3-manifold? (Kronheimer-Mrowka, Ozsv´ath-Szab´o) Does a given 3-manifold fiber over the circle? (Ghiggini, Ni) In dimension 3, the Heegaard-Floer and Seiberg-Witten Floer homologies are known to be isomorphic: work of Kutluhan-Lee-Taubes and Colin-Ghiggini-Honda, based on the relation to Hutchings’s ECH. -
Khovanov Homology, Its Definitions and Ramifications
KHOVANOV HOMOLOGY, ITS DEFINITIONS AND RAMIFICATIONS OLEG VIRO Uppsala University, Uppsala, Sweden POMI, St. Petersburg, Russia Abstract. Mikhail Khovanov defined, for a diagram of an oriented clas- sical link, a collection of groups labelled by pairs of integers. These groups were constructed as homology groups of certain chain complexes. The Euler characteristics of these complexes are coefficients of the Jones polynomial of the link. The original construction is overloaded with algebraic details. Most of specialists use adaptations of it stripped off the details. The goal of this paper is to overview these adaptations and show how to switch between them. We also discuss a version of Khovanov homology for framed links and suggest a new grading for it. 1. Introduction For a diagram D of an oriented link L, Mikhail Khovanov [7] constructed a collection of groups Hi;j(D) such that X j i i;j K(L)(q) = q (−1) dimQ(H (D) ⊗ Q); i;j where K(L) is a version of the Jones polynomial of L. These groups are constructed as homology groups of certain chain complexes. The Khovanov homology has proved to be a powerful and useful tool in low dimensional topology. Recently Jacob Rasmussen [16] has applied it to problems of estimating the slice genus of knots and links. He defied a knot invariant which gives a low bound for the slice genus and which, for knots with only positive crossings, allowed him to find the exact value of the slice genus. Using this technique, he has found a new proof of Milnor conjecture on the slice genus of toric knots. -
Computational Complexity of Problems in 3-Dimensional Topology
[NoVIKOV 1962] For n > 5, THERE DOES NOT EXIST AN ALGORITHM WHICH solves: n Computational COMPLEXITY ISSPHERE: Given A TRIANGULATED M IS IT n OF PROBLEMS IN HOMEOMORPHIC TO S ? 3-dimensional TOPOLOGY Thm (Geometrization + MANY Results) TherE IS AN ALGORITHM TO DECIDE IF TWO COMPACT 3-mflDS ARE homeomorphic. Nathan DunfiELD University OF ILLINOIS SLIDES at: http://dunfield.info/preprints/ Today: HoW HARD ARE THESE 3-manifold questions? HoW QUICKLY CAN WE SOLVE them? NP: YES ANSWERS HAVE PROOFS THAT CAN BE Decision Problems: YES OR NO answer. CHECKED IN POLYNOMIAL time. k x F pi(x) = 0 SORTED: Given A LIST OF integers, IS IT sorted? SAT: Given ∈ 2 , CAN CHECK ALL IN LINEAR time. SAT: Given p1,... pn F2[x1,..., xk] IS k ∈ x F pi(x) = 0 i UNKNOTTED: A DIAGRAM OF THE UNKNOT WITH THERE ∈ 2 WITH FOR ALL ? 11 c CROSSINGS CAN BE UNKNOTTED IN O(c ) UNKNOTTED: Given A PLANAR DIAGRAM FOR K 3 Reidemeister MOves. [LackENBY 2013] IN S IS K THE unknot? A Mn(Z) INVERTIBLE: Given ∈ DOES IT HAVE AN INVERSE IN Mn(Z)? coNP: No ANSWERS CAN BE CHECKED IN POLYNOMIAL time. UNKNOTTED: Yes, ASSUMING THE GRH P: Decision PROBLEMS WHICH CAN BE SOLVED [KuperberG 2011]. IN POLYNOMIAL TIME IN THE INPUT size. SORTED: O(LENGTH OF LIST) 3.5 1.1 INVERTIBLE: O n log(LARGEST ENTRY) NKNOTTED IS IN . Conj: U P T KNOTGENUS: Given A TRIANGULATION , A KNOT b1 = 0 (1) IS KNOTGENUS IN P WHEN ? K T g Z 0 K ⊂ , AND A ∈ > , DOES BOUND AN ORIENTABLE SURFACE OF GENUS 6 g? IS THE HOMEOMORPHISM PROBLEM FOR [Agol-Hass-W.Thurston 2006] 3-manifolds IN NP? KNOTGENUS IS NP-complete. -
The Multivariable Alexander Polynomial on Tangles by Jana
The Multivariable Alexander Polynomial on Tangles by Jana Archibald A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Mathematics University of Toronto Copyright c 2010 by Jana Archibald Abstract The Multivariable Alexander Polynomial on Tangles Jana Archibald Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2010 The multivariable Alexander polynomial (MVA) is a classical invariant of knots and links. We give an extension to regular virtual knots which has simple versions of many of the relations known to hold for the classical invariant. By following the previous proofs that the MVA is of finite type we give a new definition for its weight system which can be computed as the determinant of a matrix created from local information. This is an improvement on previous definitions as it is directly computable (not defined recursively) and is computable in polynomial time. We also show that our extension to virtual knots is a finite type invariant of virtual knots. We further explore how the multivariable Alexander polynomial takes local infor- mation and packages it together to form a global knot invariant, which leads us to an extension to tangles. To define this invariant we use so-called circuit algebras, an exten- sion of planar algebras which are the ‘right’ setting to discuss virtual knots. Our tangle invariant is a circuit algebra morphism, and so behaves well under tangle operations and gives yet another definition for the Alexander polynomial. The MVA and the single variable Alexander polynomial are known to satisfy a number of relations, each of which has a proof relying on different approaches and techniques. -
Categorified Invariants and the Braid Group
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 143, Number 7, July 2015, Pages 2801–2814 S 0002-9939(2015)12482-3 Article electronically published on February 26, 2015 CATEGORIFIED INVARIANTS AND THE BRAID GROUP JOHN A. BALDWIN AND J. ELISENDA GRIGSBY (Communicated by Daniel Ruberman) Abstract. We investigate two “categorified” braid conjugacy class invariants, one coming from Khovanov homology and the other from Heegaard Floer ho- mology. We prove that each yields a solution to the word problem but not the conjugacy problem in the braid group. In particular, our proof in the Khovanov case is completely combinatorial. 1. Introduction Recall that the n-strand braid group Bn admits the presentation σiσj = σj σi if |i − j|≥2, Bn = σ1,...,σn−1 , σiσj σi = σjσiσj if |i − j| =1 where σi corresponds to a positive half twist between the ith and (i + 1)st strands. Given a word w in the generators σ1,...,σn−1 and their inverses, we will denote by σ(w) the corresponding braid in Bn. Also, we will write σ ∼ σ if σ and σ are conjugate elements of Bn. As with any group described in terms of generators and relations, it is natural to look for combinatorial solutions to the word and conjugacy problems for the braid group: (1) Word problem: Given words w, w as above, is σ(w)=σ(w)? (2) Conjugacy problem: Given words w, w as above, is σ(w) ∼ σ(w)? The fastest known algorithms for solving Problems (1) and (2) exploit the Gar- side structure(s) of the braid group (cf. -
Research Statement 1 TQFT and Khovanov Homology
Miller Fellow 1071 Evans Hall, University of California, Berkeley, CA 94720 +1 805 453-7347 [email protected] http://tqft.net/ Scott Morrison - Research statement 1 TQFT and Khovanov homology During the 1980s and 1990s, surprising and deep connections were found between topology and algebra, starting from the Jones polynomial for knots, leading on through the representation theory of a quantum group (a braided tensor category) and culminating in topological quantum field theory (TQFT) invariants of 3-manifolds. In 1999, Khovanov [Kho00] came up with something entirely new. He associated to each knot diagram a chain complex whose homology was a knot invariant. Some aspects of this construction were familiar; the Euler characteristic of his complex is the Jones polynomial, and just as we had learnt to understand the Jones polynomial in terms of a braided tensor category, Khovanov homology can now be understood in terms of a certain braided tensor 2-category. But other aspects are more mysterious. The categories associated to quantum knot invariants are essentially semisimple, while those arising in Khovanov homology are far from it. Instead they are triangulated, and exact triangles play a central role in both definitions and calculations. My research on Khovanov homology attempts to understand the 4-dimensional geometry of Khovanov homology ( 1.1). Modulo a conjecture on the functoriality of Khovanov homology in 3 § S , we have a construction of an invariant of a link in the boundary of an arbitrary 4-manifold, generalizing the usual invariant in the boundary of the standard 4-ball. While Khovanov homology and its variations provide a ‘categorification’ of quantum knot invariants, to date there has been no corresponding categorification of TQFT 3-manifold in- variants. -
RASMUSSEN INVARIANTS of SOME 4-STRAND PRETZEL KNOTS Se
Honam Mathematical J. 37 (2015), No. 2, pp. 235{244 http://dx.doi.org/10.5831/HMJ.2015.37.2.235 RASMUSSEN INVARIANTS OF SOME 4-STRAND PRETZEL KNOTS Se-Goo Kim and Mi Jeong Yeon Abstract. It is known that there is an infinite family of general pretzel knots, each of which has Rasmussen s-invariant equal to the negative value of its signature invariant. For an instance, homo- logically σ-thin knots have this property. In contrast, we find an infinite family of 4-strand pretzel knots whose Rasmussen invariants are not equal to the negative values of signature invariants. 1. Introduction Khovanov [7] introduced a graded homology theory for oriented knots and links, categorifying Jones polynomials. Lee [10] defined a variant of Khovanov homology and showed the existence of a spectral sequence of rational Khovanov homology converging to her rational homology. Lee also proved that her rational homology of a knot is of dimension two. Rasmussen [13] used Lee homology to define a knot invariant s that is invariant under knot concordance and additive with respect to connected sum. He showed that s(K) = σ(K) if K is an alternating knot, where σ(K) denotes the signature of−K. Suzuki [14] computed Rasmussen invariants of most of 3-strand pret- zel knots. Manion [11] computed rational Khovanov homologies of all non quasi-alternating 3-strand pretzel knots and links and found the Rasmussen invariants of all 3-strand pretzel knots and links. For general pretzel knots and links, Jabuka [5] found formulas for their signatures. Since Khovanov homologically σ-thin knots have s equal to σ, Jabuka's result gives formulas for s invariant of any quasi- alternating− pretzel knot. -
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE P-Coloring Of
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE P-Coloring of Pretzel Knots A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mathematics By Robert Ostrander December 2013 The thesis of Robert Ostrander is approved: |||||||||||||||||| |||||||| Dr. Alberto Candel Date |||||||||||||||||| |||||||| Dr. Terry Fuller Date |||||||||||||||||| |||||||| Dr. Magnhild Lien, Chair Date California State University, Northridge ii Dedications I dedicate this thesis to my family and friends for all the help and support they have given me. iii Acknowledgments iv Table of Contents Signature Page ii Dedications iii Acknowledgements iv Abstract vi Introduction 1 1 Definitions and Background 2 1.1 Knots . .2 1.1.1 Composition of knots . .4 1.1.2 Links . .5 1.1.3 Torus Knots . .6 1.1.4 Reidemeister Moves . .7 2 Properties of Knots 9 2.0.5 Knot Invariants . .9 3 p-Coloring of Pretzel Knots 19 3.0.6 Pretzel Knots . 19 3.0.7 (p1, p2, p3) Pretzel Knots . 23 3.0.8 Applications of Theorem 6 . 30 3.0.9 (p1, p2, p3, p4) Pretzel Knots . 31 Appendix 49 v Abstract P coloring of Pretzel Knots by Robert Ostrander Master of Science in Mathematics In this thesis we give a brief introduction to knot theory. We define knot invariants and give examples of different types of knot invariants which can be used to distinguish knots. We look at colorability of knots and generalize this to p-colorability. We focus on 3-strand pretzel knots and apply techniques of linear algebra to prove theorems about p-colorability of these knots. -
Alexander Polynomial, Finite Type Invariants and Volume of Hyperbolic
ISSN 1472-2739 (on-line) 1472-2747 (printed) 1111 Algebraic & Geometric Topology Volume 4 (2004) 1111–1123 ATG Published: 25 November 2004 Alexander polynomial, finite type invariants and volume of hyperbolic knots Efstratia Kalfagianni Abstract We show that given n > 0, there exists a hyperbolic knot K with trivial Alexander polynomial, trivial finite type invariants of order ≤ n, and such that the volume of the complement of K is larger than n. This contrasts with the known statement that the volume of the comple- ment of a hyperbolic alternating knot is bounded above by a linear function of the coefficients of the Alexander polynomial of the knot. As a corollary to our main result we obtain that, for every m> 0, there exists a sequence of hyperbolic knots with trivial finite type invariants of order ≤ m but ar- bitrarily large volume. We discuss how our results fit within the framework of relations between the finite type invariants and the volume of hyperbolic knots, predicted by Kashaev’s hyperbolic volume conjecture. AMS Classification 57M25; 57M27, 57N16 Keywords Alexander polynomial, finite type invariants, hyperbolic knot, hyperbolic Dehn filling, volume. 1 Introduction k i Let c(K) denote the crossing number and let ∆K(t) := Pi=0 cit denote the Alexander polynomial of a knot K . If K is hyperbolic, let vol(S3 \ K) denote the volume of its complement. The determinant of K is the quantity det(K) := |∆K(−1)|. Thus, in general, we have k det(K) ≤ ||∆K (t)|| := X |ci|. (1) i=0 It is well know that the degree of the Alexander polynomial of an alternating knot equals twice the genus of the knot. -
Knot Theory and the Alexander Polynomial
Knot Theory and the Alexander Polynomial Reagin Taylor McNeill Submitted to the Department of Mathematics of Smith College in partial fulfillment of the requirements for the degree of Bachelor of Arts with Honors Elizabeth Denne, Faculty Advisor April 15, 2008 i Acknowledgments First and foremost I would like to thank Elizabeth Denne for her guidance through this project. Her endless help and high expectations brought this project to where it stands. I would Like to thank David Cohen for his support thoughout this project and through- out my mathematical career. His humor, skepticism and advice is surely worth the $.25 fee. I would also like to thank my professors, peers, housemates, and friends, particularly Kelsey Hattam and Katy Gerecht, for supporting me throughout the year, and especially for tolerating my temporary insanity during the final weeks of writing. Contents 1 Introduction 1 2 Defining Knots and Links 3 2.1 KnotDiagramsandKnotEquivalence . ... 3 2.2 Links, Orientation, and Connected Sum . ..... 8 3 Seifert Surfaces and Knot Genus 12 3.1 SeifertSurfaces ................................. 12 3.2 Surgery ...................................... 14 3.3 Knot Genus and Factorization . 16 3.4 Linkingnumber.................................. 17 3.5 Homology ..................................... 19 3.6 TheSeifertMatrix ................................ 21 3.7 TheAlexanderPolynomial. 27 4 Resolving Trees 31 4.1 Resolving Trees and the Conway Polynomial . ..... 31 4.2 TheAlexanderPolynomial. 34 5 Algebraic and Topological Tools 36 5.1 FreeGroupsandQuotients . 36 5.2 TheFundamentalGroup. .. .. .. .. .. .. .. .. 40 ii iii 6 Knot Groups 49 6.1 TwoPresentations ................................ 49 6.2 The Fundamental Group of the Knot Complement . 54 7 The Fox Calculus and Alexander Ideals 59 7.1 TheFreeCalculus ...............................