Best Practice Guide to Keeping New Zealand Lizards in Captivity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Zealand's Genetic Diversity
1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses). -
Reptiles and Amphibians of Otago
Society for Research on Amphibians and Reptiles in New Zealand (SRARNZ) presents Reptiles and Amphibians of Otago Otago is a large (31,251 km2) and lightly populated region of the southern South Island of Aotearoa New Zealand, stretching from the eastern coastline west to the Southern Alps. The earliest humans, of East Polynesian origin, arrived about 700 years ago. The largest settlement today is the coastal city of Dunedin (pop. >127,000), which grew from a Scottish influx in the 1800s. The Otago Regional Council administers the region, and tribal authority (mana whenua) rests with the iwi of Ngāi Tahu. Climates in the Otago region (roughly 45°– leiopelmatid frogs survive elsewhere in 47°S) range from changeable, cool- New Zealand. Two species of introduced temperate conditions near the coast to frogs are present, but there are no the near-continental climates (baking hot crocodilians, salamanders, terrestrial summers, freezing winters) of the interior. snakes or turtles. Marine turtles (mainly The region provides varied habitats for leatherback turtles, Dermochelys coriacea) herp species, including sand-dunes, visit the coastal waters of Otago but do grasslands, shrublands, wetlands, forests, not nest here. rock structures and scree slopes, some occupied to at least 1900 m above sea level. Today’s herpetofauna is dominated by lizards (solely geckos and skinks), including about 10 described species. A further 12 or more undescribed taxa are recognised Otago by tag names for conservation purposes, and we follow that approach here. All lizards in Otago are viviparous and long- lived, and remain vulnerable to ongoing habitat loss and predation by introduced mammals. -
Ecology of Scree Skinks (Oligosoma Waimatense) in O Tu Wharekai Wetland, Mid-Canterbury High Country, New Zealand
Lettink,New Zealand Monks: Journal Scree ofskink Ecology ecology (2019) 43(1): 3354 © 2018 New Zealand Ecological Society. RESEARCH Ecology of scree skinks (Oligosoma waimatense) in O Tu Wharekai Wetland, mid-Canterbury high country, New Zealand Marieke Lettink1* and Joanne M. Monks2 1Fauna Finders, 45 Park Terrace, Corsair Bay, Christchurch 8082 2Department of Conservation, Ōtepoti/Dunedin Office, PO Box 5244, Dunedin 9058 *Author for correspondence (Email: [email protected]) Published online: 17 October 2018 Abstract: Many of New Zealand’s 104 lizard taxa are restricted to the country’s main islands where they are vulnerable to a range of threats. Information on population trends and basic ecological data are lacking for most species, hampering conservation efforts. We monitored a population of scree skinks (Oligosoma waimatense; conservation status: Nationally Vulnerable) in an alluvial stream bed in O Tu Wharekai Wetland in the mid- Canterbury high country over 10 years (2008−2018) to understand aspects of the population’s ecology, and to clarify potential threats and options for management. Although there was no linear trend in scree skink capture numbers over this time, an 84% decline was observed following severe and unseasonal flooding in May 2009. Capture numbers recovered over c. 8.5 years in the absence of any species management. Skinks ranged in size from 60−114 mm (snout-to-vent length). Home range size estimates varied from 39.5 to 950 m2 (100% Minimum Convex Polygons) and their mean size was smaller than those reported for closely-related species. Photo-identification was not sufficiently accurate for long-term individual identification. -
Surveys for Hoplodactylus Aff. Granulatus, Roys Peak and Mt Alpha, Wanaka
Surveys for Hoplodactylus aff. granulatus, Roys Peak and Mt Alpha, Wanaka Mandy D Tocher Science & Research Unit Department of Conservation PO Box 5244 Dunedin Leigh J Marshall c/o Zoology Department University of Otago PO Box 56 Dunedin Published by Department of Conservation Head Office, PO Box 10-420 Wellington, New Zealand This report was commissioned by Otago Conservancy. ISSN 1171-9834 © 2001 Department of Conservation Reference to material in this report should be cited thus: Tocher, M.D.; Marshall, LJ, 2001. Surveys for Hoplodactylus aff. granulatus, Roys Peak and Mt Alpha, Wanaka. Conservation Advisory Science Notes 344, Department of Conservation, Wellington. Keywords: forest geckos, Hoplodactylus sp., search, Roys Peak, Wanaka Ecological District. 1. Introduction and background Recent evidence shows the forest gecko Hoplodactylus granulatus (sensu Thomas 1981) comprises at least two species (Hitchmough 1997). Based on allozyme data, Hitchmough (1997) has reinstated the cloudy gecko H. nebulosus from synonymy with H. granulatus. Furthermore, Hitchmough (1997) suggests there may be further undescribed species within the H. granulatus complex, but the small number of samples available for analyses prevents further subdivision. In particular, forest geckos from the North Is- land differ genetically from forest geckos of the South Island West Coast. In addition, forest geckos from Nelson/Marlborough are genetically similar to forest geckos from the South Island West Coast, but their life history traits are more similar to forest geckos from the North Island. Hitchmough (1997) also refers to other geckos that are likely to represent fur- ther undescribed species of H. granulatus type geckos. A small juvenile gecko from the Esperance Valley in Fiordland superficially resembles Hoplodactylus rakiurae, although it is thought to be morphologically quite distinct. -
Alpine Skinks
AUSTRALIAN THREATENED SPECIES ALPINE SKINKS Alpine Water Skink Eulamprus kosciuskoi; Conservation Status (Victoria): Critically Endangered* Alpine She-oak Skink Cyclodomorphus praealtus ; Conservation Status (Victoria): Endangered* *Advisory List of Rare or Threatened Vertebrate Fauna, Department of Sustainability and Environment (2003) and listed under Flora and Fauna Guarantee Act 1988 What do they look like? Australia and its external territories occur nowhere else in the world. Generally, skinks (family Scincidae ) are small- • to medium-sized lizards. The reptile fauna of the alpine region of Victoria is dominated by skinks (in terms of Two threatened alpine skinks are the Alpine she- numbers), although one dragon lizard and oak skink — a relatively broad-headed, short- three venomous snakes also occur in this legged, smooth-scaled lizard and the Alpine area. • water skink – a robust skink, with a body length Two other Victorian alpine skinks, the of up to 80 millimetres. Alpine bog skink ( Pseudemoia cryodroma) and the Guthega skink ( Egernia guthega) are also threatened with extinction in Where do they live? Victoria. Although some alpine skink species also occur in • The Alpine skinks give birth to live young. other parts of Victoria, several are endemic to the • A large proportion of the known range of the Alps. Nearly half of the skinks are officially Alpine she-oak skink occurs within, or listed as threatened by the Victorian Department adjacent to, the Mt Hotham and Falls Creek of Sustainability and Environment. Some of Alpine Resorts. these reptiles are abundant and readily observed, whilst others are rare and/or secretive. The Alpine water skink is restricted to sphagnum bogs, streamsides and wet heath vegetation. -
Plant Section Introduction
Re-introduction Practitioners Directory - 1998 RE-INTRODUCTION PRACTITIONERS DIRECTORY 1998 Compiled and Edited by Pritpal S. Soorae and Philip J. Seddon Re-introduction Practitioners Directory - 1998 © National Commission for Wildlife Conservation and Development, 1998 Printing and Publication details Legal Deposit no. 2218/9 ISBN: 9960-614-08-5 Re-introduction Practitioners Directory - 1998 Copies of this directory are available from: The Secretary General National Commission for Wildlife Conservation and Development Post Box 61681, Riyadh 11575 Kingdom of Saudi Arabia Phone: +966-1-441-8700 Fax: +966-1-441-0797 Bibliographic Citation: Soorae, P. S. and Seddon, P. J. (Eds). 1998. Re-introduction Practitioners Directory. Published jointly by the IUCN Species Survival Commission’s Re-introduction Specialist Group, Nairobi, Kenya, and the National Commission for Wildlife Conservation and Development, Riyadh, Saudi Arabia. 97pp. Cover Photo: Arabian Oryx Oryx leucoryx (NWRC Photo Library) Re-introduction Practitioners Directory - 1998 CONTENTS FOREWORD Professor Abdulaziz Abuzinadai PREFACE INTRODUCTION Dr Mark Stanley Price USING THE DIRECTORY ACKNOWLEDGEMENTS PART A. ANIMALS I MOLLUSCS 1. GASTROPODS 1.1 Cittarium pica Top Shell 1.2 Placostylus ambagiosus Flax Snail 1.3 Placostylus ambagiosus Land Snail 1.4 Partula suturalis 1.5 Partula taeniata 1.6 Partula tahieana 1.7 Partula tohiveana 2. BIVALVES 2.1 Freshwater Mussels 2.2 Tridacna gigas Giant Clam II ARTHROPODS 3. ORTHOPTERA 3.1 Deinacrida sp. Weta 3.2 Deinacrida rugosa/parva Cook’s Strait Giant Weta Re-introduction Practitioners Directory - 1998 3.3 Gryllus campestris Field Cricket 4. LEPIDOPTERA 4.1 Carterocephalus palaemon Chequered Skipper 4.2 Lycaena dispar batavus Large Copper 4.3 Lycaena helle 4.4 Lycaeides melissa 4.5 Papilio aristodemus ponoceanus Schaus Swallowtail 5. -
Assessment of Microbranding As an Alternative Marking Technique for Long-Term Identification of New Zealand Lizards
AvailableHitchmough on-line et al.: at: Microbranding http://www.newzealandecology.org/nzje/ as an alternative marking technique for New Zealand Lizards 151 Assessment of microbranding as an alternative marking technique for long-term identification of New Zealand lizards Rod Hitchmough1*, Keri Neilson1,5, Kara Goddard2, Mike Goold2, Brett Gartrell3, Stu Cockburn1 and Nicholas Ling4 1Research & Development Group, Department of Conservation, PO Box 10 420, Wellington 6143, New Zealand 2Hamilton Zoo, Hamilton City Council, Private Bag 3010, Hamilton 3240, New Zealand 3New Zealand Wildlife Health Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University Manawatu, Private Bag 11 222, Palmerston North 4442, New Zealand 4Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand 5Present address: Lake Management Officer, River & Catchment Services, Environment Waikato Regional Council, PO Box 4010, Hamilton East 2032, New Zealand * Author for correspondence (Email: [email protected]) Published on-line: 1 May 2012 Abstract: ‘Microbranding’, a system for individually identifying reptiles and amphibians based on a numbered code of spot brands applied to the body and limbs, was tested on New Zealand skinks and geckos. Common geckos (Woodworthia maculata) and copper skinks (Oligosoma aeneum) were used as test animals. Brands applied in autumn took 3 months or more to heal. There was no evidence of brand-related mortality or increased parasite loads in branded animals. However, after healing the brands faded very rapidly in the skinks to become totally unreadable in all surviving branded skinks after 2.5 years and not accurately readable in most geckos after 3 years. We therefore consider the technique unsuitable as a standard marking procedure for New Zealand lizards. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
DOCDM-1023668 Herpetofauna: Photo-Identification V1.0 2
Herpetofauna: photo-identification Version 1.0 This specification was prepared by Marieke Lettink in 2012. Contents Synopsis .......................................................................................................................................... 2 Assumptions .................................................................................................................................... 5 Advantages ...................................................................................................................................... 5 Disadvantages ................................................................................................................................. 6 Suitability for inventory ..................................................................................................................... 6 Suitability for monitoring ................................................................................................................... 6 Skills ................................................................................................................................................ 7 Resources ....................................................................................................................................... 7 Minimum attributes .......................................................................................................................... 7 Data storage ................................................................................................................................... -
Wellington Green Gecko Advocacy: Assessing Awareness & Willingness
Wellington Green Gecko Advocacy: Assessing Awareness & Willingness An Interactive Qualifying Project submitted to the Faculty of Worcester Polytechnic Institute in partial fulfilment of the requirements for the Degree of Bachelor of Science in cooperation with Wellington Zoo. Submitted on March 3, 2017 Submitted By: Submitted to: Calvin Chen Daniela Biaggio James Doty Emilia Murray Michael Eaton Wellington Zoo Derrick Naugler Project Advisors: Professor Dominic Golding Professor Ingrid Shockey This report represents the work of four WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review. For more information about the projects, please see http://www.wpi.edu/Academics/Project i Abstract Due to the large proportion of native lizard species currently considered at risk or threatened, Wellington Zoo aimed to better understand public attitudes and awareness regarding the Wellington Green Gecko and New Zealand lizards in general. To assist the zoo, we surveyed the general public and interviewed both herpetological and conservation experts. Through these methods, we determined that the public lacks awareness of native lizards but has a high willingness to engage in conservation regarding geckos. From this data, we developed a public service announcement and a series of recommendations, focused on improving the public’s knowledge of native lizards, which Wellington Zoo can implement to foster gecko conservation in Wellington. ii Executive summary Figure A: The Wellington Green Gecko (Doty, 2017) The Wellington Green Gecko (shown in Figure A), Naultinus Elegans Punctatus, is a medium sized lizard that can measure up to approximately 200 mm in length and can be identified by its bright green back, white or yellow spots along its dorsal region and a vivid blue mouth lining (Manaaki Whenua Landcare Research, n.d.). -
Care Sheet: Robust and Mcgregor's Skinks
Care Sheet: Robust and McGregor’s skinks Robust skink (Oligosoma alani) McGregor’s skink (Oligosoma macgregori) Adult Size: up to 150mm SVL. Adult Size: up to 114mm SVL. Threat status: ‘At Risk – Recovering’. Threat status: ‘At Risk – Recovering’. Lifespan: over 32 years. (likely over 40). Lifespan: over 35 years. Habitat: coastal forest, flaxland, deep rock Habitat: coastal forest, flaxland, boulder beaches, piles, iceplant herbfield, seabird burrows, deep deep rock piles, iceplant herbfield, seabird burrows, leaf litter and under rocks / logs. deep leaf litter and under rocks / logs. Permit Level: Conservation species. Permit Level: Insurance population species. Enclosure: Minimum recommended enclosure size = 150x70x70cm (LxWxH). Ideal Group Size: 1:1 (M:F). Compatible Species: Duvaucel’s geckos (but authorisations usually prohibit housing with other species). Recommended Cage Furnishing: The enclosure should be decorated with live plants (though these are not entirely necessary), logs, low branches for climbing, and a thick layer of leaf litter for these skinks to forage and take refuge in. Robust and McGregor’s skinks are particularly susceptible to evaporative water loss through their skin, so it is crucial that they be provided adequate damp refuge sites in the form of buried containers filled with damp leaf litter and/or damp sphagnum moss. The provision of dry refuges is also equally important as despite these lizards’ requirement for damp habitats, they will usually take refuge in cool dry refuges. Issues with skin infections can be experienced if these species are kept in conditions that are too damp where they aren’t provided adequate dry refuge sites. Refuge sites that have proved popular in captivity include rock piles, sections of bamboo or polythene pipe (with one end blocked up) buried in leaf litter, rock piles, bark stacks, hollow ponga logs, and stacks of Onduline semi-buried in leaf litter. -
Survey of the Lizard Fauna of Janet Stewart and Styx Mill Conservation Reserves, Christchurch
Prepared for Styx Living Laboratory Trust 2010. Survey of the Lizard Fauna of Janet Stewart and Styx Mill Conservation Reserves, Christchurch Christine McClure – Lincoln University Contents Pg 1. Abstract 3 2. Introduction 3 3. Methods 5 3.1 Study Areas 5 3.1.1 Styx Mill Conservation Reserve 5 3.1.2 Janet Stewart Reserve: Pá Harakeke 6 3.2 Predation 7 3.3 Sites and Sampling 9 3.4 Site descriptions 10 3.6 Pitfall Traps (PF) 12 3.7 Artificial Cover Object (ACO) 14 3.8 Physical variables measured 15 4. Results 16 4.1 Species Identified 16 4.2 Site Results 17 5. Discussion 21 5.1 Effects of vegetation change on lizard habitat use 21 5.2 Herbicides 23 5.3 Predators 23 5.3.1 Predation population eruptions 24 5.4 Vandalism 26 5.5 Recommendations 26 5.6 Conclusion 27 5.7 Further Study 27 6. Acknowledgements 28 7. Benefits f the Summer Scholarship 28 Appendix 29 References Cited 31 2 | Page Survey of the Lizard Fauna of Janet Stewart and Styx Mill Conservation Reserves, Christchurch. 1. Abstract A survey was conducted in two Christchurch urban reserves, Janet Stewart and Styx Mill Conservation Reserves to establish which reptile species were present, including species preferred habitat type and health and age structure of populations found. Methods used to assess reptile fauna in the chosen areas were low‐intensity monitoring techniques such as pitfall trapping (PF) and artificial cover objects (ACO), placed at 14 sites throughout the reserves. Results show that there are two species of skink; Oligosoma nigriplantare polychroma (Common skink / mokomoko) and Oligosoma maccanni (McCann’s skink / mokomoko) inhabiting dry grassland habitats at Styx Mill Conservation Reserve.