The November 2002 Eruption of Piton De La Fournaise, Réunion: Tracking the Pre-Eruptive Thermal Evolution of Magma Using Melt Inclusions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hawaii Volcanoes National Park Geologic Resources Inventory Report
National Park Service U.S. Department of the Interior Natural Resource Program Center Hawai‘i Volcanoes National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/163 THIS PAGE: Geologists have lloongng been monimonittoorriing the volcanoes of Hawai‘i Volcanoes National Park. Here lalava cascades durduriingng the 1969-1971 Mauna Ulu eruption of Kīlauea VolVolcano. NotNotee the Mauna Ulu fountountaiain in the background. U.S. Geologiogicalcal SurSurvveyey PhotPhotoo by J. B. Judd (12/30/1969). ON THE COVER: ContContiinuouslnuouslyy eruptuptiingng since 1983, Kīllaueaauea Volcano contcontiinues to shapshapee Hawai‘Hawai‘i VoVollccanoes NatiNationalonal ParkPark.. Photo courtesy Lisa Venture/UniversiUniversitty of Cincinnati. Hawai‘i Volcanoes National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/163 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 December 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Denver, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. -
Bursting the Bubble of Melt Inclusions†K
American Mineralogist, Volume 100, pages 672–673, 2015 HIGHLIGHTS AND BREAKTHROUGHS Bursting the bubble of melt inclusions†k JACOB B. LOWENSTERN1,* 1U.S. Geological Survey, Volcano Science Center, Menlo Park, California 94025, U.S.A. Abstract: Most silicate melt inclusions (MI) con- crystal and trapped liquid create conditions that strongly favor tain bubbles, whose significance has been alternately creation of a low-density phase. In studies of FI, the bubbles are calculated, pondered, and ignored, but rarely if ever studied intensively (Samson et al. 2003). Experimental heating directly explored. Moore et al. (2015) analyze the and homogenization provide insight into the temperature of en- bubbles, as well as their host glasses, and conclude trapment and the conditions of formation. Raman spectroscopy and other techniques can provide quantitative information on that they often hold the preponderance of CO2 in gas species within bubbles. the MI. Their findings entreat future researchers Surprisingly, little has been done to analyze the bubbles within to account for the presence of bubbles in MI when MI—perhaps partly because of interference from the surround- calculating volatile budgets, saturation pressures, ing glass greatly complicates spectroscopic and other analytical and eruptive flux. Keywords: Melt inclusion, glass methods. Many authors recognize that bubbles can contain a inclusion, bubble, volatile, CO2 significant percentage of the volatiles in an inclusion, particularly for those with low solubility in the melt such as CO2 (Anderson On page 806, of this issue, Lowell Moore and colleagues and Brown 1993). But there is little consensus on how to account contribute an exciting, scholarly, and admirably thorough trea- for the presence of bubbles. -
Understanding a Volcano Through a Droplet: a Melt Inclusion Approach
Journal of Geochemical Exploration 171 (2016) 4–19 Contents lists available at ScienceDirect Journal of Geochemical Exploration journal homepage: www.elsevier.com/locate/jgeoexp Understanding a volcano through a droplet: A melt inclusion approach C. Cannatelli a,b,⁎,A.L.Dohertya, R. Esposito c,A.Limaa, B. De Vivo a a Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli Federico II, Italy b Department of Geology and Andean Geothermal Centre of Excellence (CEGA), Universidad de Chile, Plaza Ercilla 803, Santiago, Chile c Earth, Planetary and Space Sciences, UC Los Angeles, CA, USA article info abstract Article history: This review paper is intended to be a guideline to novices on how to conduct research on silicate melt inclusions Received 29 January 2015 in volcanic environments, which analytical techniques are more suitable to gather the desired data and the major Revised 9 July 2015 pitfalls scientist may encounter. Silicate melt inclusions (SMIs) are small quantities of silicate melt that are Accepted 3 October 2015 trapped in minerals during their growth or crystallization. They contain liquids formed in equilibrium with Available online 23 October 2015 their host minerals and therefore record the liquid line of descent of magmatic systems. Upon trapping, SMIs be- come ideally closed to the surrounding environment, and behave as time capsules, giving important information Keywords: Melt inclusions about processes that originated magmas and the nature of their mantle source. A melt inclusions investigation -
Melt Inclusions in Chassignites: a Connection Between Martian Meteorites and in Situ Evolved Rocks at Gale Crater
51st Lunar and Planetary Science Conference (2020) 2342.pdf MELT INCLUSIONS IN CHASSIGNITES: A CONNECTION BETWEEN MARTIAN METEORITES AND IN SITU EVOLVED ROCKS AT GALE CRATER. P. Wu1, E. Gazel1, and A. Udry2 1Department of Earth and Space Sciences, Cornell University ([email protected], [email protected]); 2Department of Geoscience, UNLV ([email protected]). Introduction: UnderstandinG the compositional Methods: We used six parental magma composi- diversity of igneous rocks is the key to investigate tions calculated from NWA 2737 melt inclusions by conditions of meltinG and sources within the martian He et al. [3] as startinG compositions for the modeling. interior. Meteorites, our only martian samples, can be He et al. [3] analyzed nine melt inclusions in a sinGle analyzed with the most advanced laboratory analytical thin section of NWA 2737. Measured phase composi- techniques and thus has dominated our knowledge of tions and phase abundances are used to calculate the martian iGneous chemistry. Most martian meteorites bulk composition of inclusions [3]. are classified into three major cateGories, sherGottite, AmonG the nine melt inclusions, olivine, low-Ca nakhlite, and chassignite (SNC). As a type of olivine pyroxene, kaersutitic amphibole, augite, apatite, chro- cumulates with abundant melt inclusions, chassiGnites mite, sulfide, alkali-rich Glass, and some Ti-biotite can provide key information on the compositions of were identified [3]. Since MI-4 and MI-5 are likely parental magmas, volatile budgets, and early crystalli- off-center cuts and MI-6 includes some biotite and zation processes. Chassigny, Northwest Africa (NWA) may represent composite Grains, we excluded MI-4, 2737 and Northwest Africa (NWA) 8694 are the only MI-5, and MI-6 from our study. -
Basaltic Explosive Volcanism: Constraints from Deposits and Models B.F
ARTICLE IN PRESS Chemie der Erde 68 (2008) 117–140 www.elsevier.de/chemer INVITED REVIEW Basaltic explosive volcanism: Constraints from deposits and models B.F. HoughtonÃ, H.M. Gonnermann Department of Geology and Geophysics, University of Hawai’i at Manoa, Honolulu, HI 96822, USA Received 13 March 2008; accepted 10 April 2008 Abstract Basaltic pyroclastic volcanism takes place over a range of scales and styles, from weak discrete Strombolian 2 3 1 7 8 1 explosions ( 10 –10 kg sÀ ) to Plinian eruptions of moderate intensity (10 –10 kg sÀ ). Recent well-documented historical eruptions from Etna, Kı¯lauea and Stromboli typify this diversity. Etna is Europe’s largest and most voluminously productive volcano with an extraordinary level and diversity of Strombolian to subplinian activity since 1990. Kı¯lauea, the reference volcano for Hawaiian fountaining, has four recent eruptions with high fountaining (4400 m) activity in 1959, 1960, 1969 (–1974) and 1983–1986 (–2008); other summit (1971, 1974, 1982) and flank eruptions have been characterized by low fountaining activity. Stromboli is the type location for mildly explosive Strombolian eruptions, and from 1999 to 2008 these persisted at a rate of ca. 9 per hour, briefly interrupted in 2003 and 2007 by vigorous paroxysmal eruptions. Several properties of basaltic pyroclastic deposits described here, such as bed geometry, grain size, clast morphology and vesicularity, and crystal content are keys to understand the dynamics of the parent eruptions. The lack of clear correlations between eruption rate and style, as well as observed rapid fluctuations in eruptive behavior, point to the likelihood of eruption style being moderated by differences in the fluid dynamics of magma and gas ascent and the mechanism by which the erupting magma fragments. -
High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions
REPORTS and the catalyst tolerates useful substrate func- 10. P. P. Fu, R. G. Harvey, Chem. Rev. 78, 317 (1978). 25. L. H. Heitman et al., J. Med. Chem. 52, 2036 tional groups, including aromatic and heteroatom 11. T. Moriuchi, K. Kikushima, T. Kajikawa, T. Hirao, (2009). Tetrahedron Lett. 50, 7385 (2009). 26. R. A. Sheldon, J. M. Sobczak, J. Mol. Catal. 68, substituents. With the development of improved 12.C.S.Yi,D.W.Lee,Organometallics 28, 947 1 (1991). methods for safe and scalable aerobic oxidation (2009). 27. J. E. Bercaw, N. Hazari, J. A. Labinger, J. Org. Chem. 73, reactions (30), dehydrogenation methods of this 13.P.F.Schuda,W.A.Price,J. Org. Chem. 52, 1972 8654 (2008). type could have an important impact on laboratory- (1987). 28. J. E. Bercaw, N. Hazari, J. A. Labinger, P. F. Oblad, Angew. Chem. Int. Ed. 47, 9941 (2008). and industrial-scale chemical synthesis. 14. J. Muzart, J. P. Pete, J. Mol. Catal. 15, 373 (1982). 15. T. T. Wenzel, J. Chem. Soc. Chem. Commun. 1989, 932 29. G. E. Dobereiner, R. H. Crabtree, Chem. Rev. 110,681 (1989). (2010). 30. X. Ye, M. D. Johnson, T. Diao, M. H. Yates, S. S. Stahl, References and Notes 16. J. Muzart, Eur. J. Org. Chem. 2010, 3779 (2010). Green Chem. 12, 1180 (2010). 1. J. H. P. Tyman, Synthetic and Natural Phenols (Elsevier, Acknowledgments: We are grateful to the NIH New York, 1996). 17. D. R. Buckle, in Encyclopedia of Reagents for Organic Synthesis, D. Crich, Ed. (Wiley, New York, 2010). -
And Ground-Based Geophysical Data Tracking of Magma Migration in Shallow Feeding System of Mount Etna Volcano
remote sensing Article Space- and Ground-Based Geophysical Data Tracking of Magma Migration in Shallow Feeding System of Mount Etna Volcano Marco Laiolo 1,* , Maurizio Ripepe 2, Corrado Cigolini 1, Diego Coppola 1, Massimo Della Schiava 2, Riccardo Genco 2, Lorenzo Innocenti 2, Giorgio Lacanna 2, Emanuele Marchetti 2, Francesco Massimetti 1,2 and Maria Cristina Silengo 2 1 Dipartimento di Scienze della Terra, Università di Torino, V. Valperga Caluso 4; 10125 Torino, Italy; [email protected] (C.C.); [email protected] (D.C.); [email protected] (F.M.) 2 Dipartimento di Scienze della Terra, Università di Firenze, V. G. La Pira 4; 50121 Firenze, Italy; maurizio.ripepe@unifi.it (M.R.); massimo.dellaschiava@unifi.it (M.D.S.); riccardo.genco@unifi.it (R.G.); lorenzo.innocenti@unifi.it (L.I.); giorgio.lacanna@unifi.it (G.L.); emanuele.marchetti@unifi.it (E.M.); [email protected] (M.C.S.) * Correspondence: [email protected] Received: 29 April 2019; Accepted: 16 May 2019; Published: 18 May 2019 Abstract: After a month-long increase in activity at the summit craters, on 24 December 2018, the Etna volcano experienced a short-lived lateral effusive event followed by a rapid resumption of low-level explosive and degassing activity at the summit vents. By combining space (Moderate Resolution Imaging Spectroradiometer; MODIS and SENTINEL-2 images) and ground-based geophysical data, we track, in near real-time, the thermal, seismic and infrasonic changes associated with Etna’s activity during the September–December 2018 period. Satellite thermal data reveal that the fissural eruption was preceded by a persistent increase of summit activity, as reflected by overflow episodes in New SouthEast Crater (NSE) sector. -
A Melt Inclusion Study on Volatile Abundances in the Lunar Mantle
Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 249 (2019) 17–41 www.elsevier.com/locate/gca A melt inclusion study on volatile abundances in the lunar mantle Peng Ni (倪鹏) a,⇑, Youxue Zhang (张有学) a, Sha Chen (陈沙) a, Joel Gagnon b a Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA b Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada Received 22 December 2017; accepted in revised form 23 December 2018; Available online 08 January 2019 Abstract Earth’s Moon was thought to be highly depleted in volatiles due to its formation by a giant impact. Over the last decade, however, evidence has been found in apatites, lunar volcanic glass beads, nominally anhydrous minerals and olivine-hosted melt inclusions, to support a relatively ‘‘wet” Moon. In particular, based on H2O/Ce, F/Nd, and S/Dy ratios, recent melt inclusion (MI) work estimated volatile (H2O, F, and S) abundances in lunar rocks to be similar to or slightly lower than the terrestrial depleted mantle. Uncertainties still occur, however, in whether the limited numbers of lunar samples studied are representative of the primitive lunar mantle, and whether the high H2O/Ce ratio for pyroclastic sample 74220 is due to local heterogeneity. In this paper, we report major element, trace element, volatile, and transition metal data in MIs for 5 mare basalt samples (10020, 12040, 15016, 15647 and 74235) and a pyroclastic deposit (74220). With our new lunar MI data, H2O/Ce ratios are still found to vary significantly among different lunar samples, from 50 for 74220, to 9 for 10020, 3 for 74235, 1.7 to 0.9 for 12008, 15016, and 15647, and 0.5 for 12040. -
Mineral-Hosted Melt Inclusions How Do We Read the Stories They Have to Tell?
Mineral-Hosted Melt Inclusions How do we read the stories they have to tell? Woods Hole Oceanographic Institution Woods Hole, MA, USA August 10-12, 2018 Thank you to our sponsors. Mineral-Hosted Melt Inclusions, Woods Hole, MA, USA, 10-12 August 2018 Welcome to Mineral-Hosted Melt Inclusions: How do we read the stories they have to tell? Thank you to our sponsors. The study of mineral-hosted melt inclusions traces Over the next two days, fifteen invited speakers its origins all the way back to the mid-nineteenth will discuss the state of our knowledge with respect century. In 1857, Henry Clifton Sorby recognized to mineral-hosted melt inclusions. Topics range that the presence of “glass cavities” demonstrates from the origin and fidelity of mineral-hosted that the host crystals had a magmatic – rather than melt inclusions to the application of state-of-the- an aqueous – origin and used this observation to art micro-analytical techniques to quantify their argue that granite is the product of fusion rather compositions. Each talk will be followed by a than precipitation from a fluid. Today, these small discussion session intended to promote interaction pockets of silicate melt entrapped within growing among all the attendees. One objective is to mineral grains are used to study everything from develop guidelines for publication of data from melt mantle heterogeneity to pre-eruptive magmatic inclusion studies to be summarized in a collegial volatiles and the oxidation state of the upper mantle. manuscript that the organizers will submit for The information recorded in melt inclusions is publication shortly after the workshop. -
New Insights from Olivine-Hosted Melt Inclusions from Multiple Samples
JOURNAL OF PETROLOGY VOLUME 53 NUMBER 4 PAGE S 6 65 ^ 6 98 2012 doi:10.1093/petrology/egr075 Melting and Crustal Processes at the FAMOUS Segment (Mid-Atlantic Ridge): New Insights from Olivine-hosted Melt Inclusions from Multiple Samples MURIEL LAUBIER*, ALLISON GALE AND CHARLES H. LANGMUIR DEPARTMENT OF EARTH AND PLANETARY SCIENCES, HARVARD UNIVERSITY, 20 OXFORD STREET, CAMBRIDGE, Downloaded from MA 02138, USA RECEIVED SEPTEMBER 29, 2010; ACCEPTED DECEMBER 2, 2011 ADVANCE ACCESS PUBLICATION FEBRUARY 10, 2012 http://petrology.oxfordjournals.org/ Most published studies of olivine-hosted melt inclusions from (MREE/HREE) ratios.The high Al2O3 and low SiO2 contents, mid-ocean ridges have been based on a single sample. Here we present as well as positive Sr anomalies in some of the high-Al melt inclu- a comprehensive melt inclusion study of major and trace elements sions, are best explained by assimilation of plagioclase-bearing cu- from a single ocean ridge segment, the FAMOUS segment of the mulates. The trace element variability in the high-Mg melt Mid-Atlantic Ridge. The melt inclusion dataset includes 312 inclusions is not consistent with a simple continuous melting column olivine-hosted (Mg-number 85^92) melt inclusions from 14 samples and requires pooling of near-fractional melts within the melting distributed along the segment.This permits a more comprehensive as- regime and a variable mantle source composition. Because the mean at Harvard University on June 4, 2012 sessment of the variability within melt inclusions from a single composition of these melt inclusions reflects greater extents of melting region, and of the relationship between melt inclusion and lava com- than the lavas, we propose that the melt inclusions come from the positions. -
9 Microthermometry and Raman Spectroscopy Of
Rom. J. Mineral Deposits, vol. 92 (2019), No. 1-2, p. 9-32 MICROTHERMOMETRY AND RAMAN SPECTROSCOPY OF FLUID AND MELT INCLUSIONS IN THE ALPINE PORPHYRY COPPER DEPOSITS FROM ROMANIA: INSIGHTS ON MICROMETALLOGENY Ioan PINTEA1*, Sorin Silviu UDUBAŞA2, Elena Luisa IATAN3, Ion BERBELEAC3, Daniel BÎRGĂOANU1, Oana Claudia CIOBOTEA-BARBU1, Eduard GHINESCU1 1Geological Institute of Romania, 1, Caransebeș Str., 012271 Bucharest, Romania; 2Univ. of Bucharest, 1, N. Bălcescu Blv., 010041 Bucharest, Romania; 3Institute of Geodynamics of Romanian Academy, 19-21, J.-L. Calderon Str., 020032 Bucharest, Romania. * [email protected] Abstract: The paper presents complementary analyses of Raman spectroscopy and high-temperature microthermometry on fluid/melt inclusions from alpine porphyry copper and associated epithermal and skarn deposits from Romania. It reveals a complex phase association and multistage evolution during the magmatic-to- hydrothermal processes underlying the deep-seated MASH zones of the related subduction factories. Important differences in P-T-X properties were found for the main mineralizing processes between the two porphyry copper deposit clusters, one in the Banat region of the South Carpathians (Upper Cretaceous) and other in the Metaliferi Mountains of the South Apuseni Mountains (Miocene). These differences ranged up to 300oC in temperature, more than 1-3 kbar of pressure and 20-30 wt% NaCl eq. salinity. Although the magmatic-hydrothermal transitions are characterized by melt-melt-fluid immiscibility at high P-T conditions -
Monitoring Active Volcanoes Using a Handheld Thermal Camera
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Earth-prints Repository Monitoring active volcanoes using a handheld thermal camera Sonia Calvari, Luigi Lodato and Letizia Spampinato Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Catania, Piazza Roma 2, 95123 Catania (Italy) Abstract Thermal imaging has recently been introduced in volcanology to analyse a number of different volcanic processes. This system allows us to detect magma movements within the summit conduits of active volcanoes, and then to reveal volcanic activity within the craters even through the thick curtain of gases usually released by volcanoes such as Mt Etna and Stromboli. Thermal mapping is essential during effusive eruptions, since it distinguishes lava flows of different age and concealed lava tubes’ path, improving hazard evaluation. Recently, thermal imaging has also been applied to reveal failure planes and instability on the flanks of active volcanoes. Excellent results have been obtained in terms of volcanic prediction during the two recent eruptions of Mt Etna and Stromboli, both occurred in 2002-2003. On Etna, thermal images monthly recorded on the summit of the volcano revealed the opening of fissure systems several months in advance. After the onset of the flank eruption, daily thermal mapping allowed us to monitor a complex lava flow field spreading within a forest, below a thick plume of ash and gas. At Stromboli, helicopter-borne thermal surveys allowed us to recognise the opening of fractures along the Sciara del Fuoco, one hour before the large failure that caused severe destruction on the island on 30 December 2002.