The November 2002 Eruption of Piton De La Fournaise, Réunion: Tracking the Pre-Eruptive Thermal Evolution of Magma Using Melt Inclusions

Total Page:16

File Type:pdf, Size:1020Kb

The November 2002 Eruption of Piton De La Fournaise, Réunion: Tracking the Pre-Eruptive Thermal Evolution of Magma Using Melt Inclusions Bull Volcanol (2009) 71:1077–1089 DOI 10.1007/s00445-009-0287-5 RESEARCH ARTICLE The November 2002 eruption of Piton de la Fournaise, Réunion: tracking the pre-eruptive thermal evolution of magma using melt inclusions Nathalie Vigouroux & A. E. Williams-Jones & Paul Wallace & Thomas Staudacher Received: 19 November 2007 /Accepted: 29 April 2009 /Published online: 6 June 2009 # Springer-Verlag 2009 Abstract The November 2002 eruption of Piton de la estimate eruption temperatures. The November 2002 melt Fournaise in the Indian Ocean was typical of the activity of inclusion compositions suggest that they were at temper- the volcano from 1999 to 2006 in terms of duration and atures between 1,070°C and 1,133°C immediately before volume of magma ejected. The first magma erupted was a eruption and quenching. This relatively wide temperature basaltic liquid with a small proportion of olivine phenocrysts range may reflect the fact that most of the melt inclusions (Fo81) that contain small numbers of melt inclusions. In were from olivine in lava samples and therefore likely subsequent flows, olivine crystals were more abundant and underwent minor but variable amounts of post-eruptive 2+ richer in Mg (Fo83–84). These crystals contain numerous melt crystallization and Fe loss by diffusion due to their and fluid inclusions, healed fractures, and dislocation relatively slow cooling on the surface. In contrast, melt features such as kink bands. The major element composition inclusions in tephra samples from past major eruptions of melt inclusions in this later olivine (Fo83–84)isoutof yielded a narrower range of higher eruption temperatures equilibrium with that of its host as a result of extensive post- (1,163–1,181°C). The melt inclusion data presented here and entrapment crystallization and Fe2+ loss by diffusion during in earlier publications are consistent with a model of magma cooling. Melt inclusions in Fo81 olivine are also chemically recharge from depth during major eruptions, followed by out of equilibrium with their hosts but to a lesser degree. storage, cooling, and crystallization at shallow levels prior to Using olivine–melt geothermometry, we determined that expulsion during events similar in magnitude to the relatively melt inclusions in Fo81 olivine were trapped at lower small November 2002 eruption. temperature (1,182±1°C) than inclusions in Fo83–84 olivine (1,199–1,227°C). This methodology was also used to Keywords Piton de la Fournaise . Volcanic plumbing system . Melt inclusions . Editorial responsibility: M. Clynne Olivine cumulates . Post-entrapment modifications . A. E. Williams-Jones Volatiles . Magma evolution Department of Earth and Planetary Sciences, McGill University, Montreal, QC, Canada Introduction P. Wallace Department of Geological Sciences, University of Oregon, Eugene, OR, USA The 530-ka Piton de la Fournaise shield volcano is the current manifestation of the Réunion hot spot, which T. Staudacher produced the Deccan Traps in India at about 65 Ma Observatoire Volcanologique du Piton de la Fournaise, IPGP, Réunion, France (Courtillot et al. 1986). It is located at the southern end of the Mascarene Basin, encompassing the islands of Maur- Present address: itius and Rodrigues. Piton de la Fournaise rests on the south * N. Vigouroux ( ) flank of the older and now extinct Piton des Neiges, which Department of Earth Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6 forms most of present day Réunion Island (Fig. 1), and is e-mail: [email protected] one of the world’s most active volcanoes. 1078 Bull Volcanol (2009) 71:1077–1089 The anatomy of Piton de la Fournaise is similar to that of the early phase (first day) of the November 2002 eruption Kilauea in that a central conduit links a shallow magma crystallized from the magma hosting it, which was more chamber with the summit craters, and flank eruptions are evolved and cooler than the magma erupted during past fed by lateral dyke intrusions connected to the central events studied by Bureau et al. (1998b). The bulk of the conduit (Peltier et al. 2007). Fissures from historic flank olivine, which was ejected in increasing proportions during eruptions are mostly distributed along an arcuate rift zone the later stages of the 2002 eruption (late phase) and is less extending from the northeast of the caldera to the southeast, evolved, appears to have been entrained in this lower passing through the central craters (Peltier et al. 2005). temperature magma. This caused it to experience a larger Recent models based on seismicity and deformation of the amount of pre-eruptive cooling than olivine of similar volcano prior to eruption suggest that Piton de la Fournaise composition ejected during the earlier events studied by has a magma chamber with a volume of ~300×106 m3 Bureau et al. (1998b). These results are consistent with the located between sea level and 500 m above sea level (a.s.l.; model of crystallization, accumulation, storage, and erup- Sapin et al. 1996; Nercessian et al. 1996; Peltier et al. tion proposed previously by Bureau et al. (1998b, 1999), in 2007). A deeper magma chamber, located at 5–6 km below which they used melt inclusions to reveal the crystallization sea level (b.s.l.), has also been postulated (Battaglia et al. and storage of olivine Fo83–85 at a variety of depths ranging 2005) and olivine crystallization has been shown to occur from ~5 km b.s.l. to the near surface, prior to eruption from as deep as 15 km b.s.l. (Bureau et al. 1998a, b). Finally, a the central conduit area of the volcano. They showed that crystal cumulate zone, evident as a high-density plug on the the volatile contents found in the melt inclusions from a basis of seismic data, is likely to be present within the single eruption could not be reconciled with a plausible central cone above sea level (Nercessian et al. 1996; Sapin degassing trend and therefore must represent trapping of et al. 1996) and to extend to the Moho at a depth of about individual melt batches with variable degassing histories. 12.5 km b.s.l. (Gallart et al. 1999). Information on the depth of crystallization and accumu- Background geology lation of magma within the volcano is crucial to further understanding the plumbing system of Piton de la Four- The summit area of Piton de la Fournaise volcano is naise. Melt inclusions provide an effective tool for this enclosed on three of its sides by the 4,500-year-old Enclos purpose because they trap small pockets of magma at Fouqué, the remnant of the youngest of three calderas, different stages during the crystallization of crystals in whereas its east flank is open to the Indian Ocean. The response either to undercooling (Faure et al. 2003)or summit rises to 2,631 m a.s.l. and is crowned by two changes in the chemical environment (e.g., magma mixing) intersecting craters, Bory and Dolomieu, the latter one (Sobolev 2007). Analysis of the chemical composition, being the larger and representing the current center of including volatile contents (H2OandCO2), of melt activity (Fig. 1). inclusions, yields information on the depth of crystalliza- Most of the historic eruptions have been from vents tion and storage, as well as trends in the chemical evolution located inside the walls of the current caldera, at various of the magma. At Piton de la Fournaise, melt inclusion elevations along the rift zone (summit to 1,000 m a.s.l.) but studies of olivine from both prehistoric (~3,000–50 ka) and three of the last four large-volume (>50×106 m3) deep- historic (1931, 1977, 1998) eruptions have shown that seated eruptions (1977, 1986, 1998) have had at least one olivine crystallization and accumulation occurs over a wide vent located outside of the caldera rim along an extension range of depths from the Moho to approximately sea level of the intracaldera rift zone. Prior to the collapse of the (Bureau et al. 1998b, 1999). The samples analyzed in these current caldera (Enclos Fouqué), the southeast and the studies were from large-volume, mostly olivine-rich mag- northeast rift zones were active along the margins of the old mas erupted from vents located outside the current caldera caldera rim (Plaine des Sables collapse; Fig. 1) and a few and rift system (prehistoric eruptions) and intracaldera vents vents/eruptive centers were preserved after the sector active in historical times (1931, 1998). collapse that created the current caldera (e.g., Piton For this study, we analyzed olivine-hosted melt inclu- Manapany; Bureau et al. 1998b). sions from the moderate-volume (8×106 m3) flank eruption The Piton de la Fournaise volcano is still in its shield of November 2002, a seismically shallow event (down to building stage, erupting lavas that range from aphyric 1.5 km b.s.l.) characteristic of the activity at Piton de la basalts to oceanites, which are olivine-rich basalts equiva- Fournaise from 1999 to 2006. Using the compositions of lent to the Hawaiian picrites (Upton and Wadsworth 1966). these inclusions after correction for post-entrapment mod- Most of the olivine erupted at Piton de la Fournaise ranges ifications, we have characterized the thermal history of the in composition from Fo81 to Fo87 (Albarède et al. 1997; magma from which the olivine crystallized and in which it Bureau et al. 1998a, b, 1999). However, basalts containing erupted. Results of this study suggest that olivine ejected in Fo83–84 olivine have been the dominant lava type during the Bull Volcanol (2009) 71:1077–1089 1079 Fig. 1 Digital elevation model of the summit area of Piton de la Fournaise. Inset shows location on Reunion Island. The two summit craters (Bory and Dolomieu) are within the youngest caldera (L’Enclos Fouqué).
Recommended publications
  • Hawaii Volcanoes National Park Geologic Resources Inventory Report
    National Park Service U.S. Department of the Interior Natural Resource Program Center Hawai‘i Volcanoes National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/163 THIS PAGE: Geologists have lloongng been monimonittoorriing the volcanoes of Hawai‘i Volcanoes National Park. Here lalava cascades durduriingng the 1969-1971 Mauna Ulu eruption of Kīlauea VolVolcano. NotNotee the Mauna Ulu fountountaiain in the background. U.S. Geologiogicalcal SurSurvveyey PhotPhotoo by J. B. Judd (12/30/1969). ON THE COVER: ContContiinuouslnuouslyy eruptuptiingng since 1983, Kīllaueaauea Volcano contcontiinues to shapshapee Hawai‘Hawai‘i VoVollccanoes NatiNationalonal ParkPark.. Photo courtesy Lisa Venture/UniversiUniversitty of Cincinnati. Hawai‘i Volcanoes National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/163 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 December 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Denver, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Bursting the Bubble of Melt Inclusions†K
    American Mineralogist, Volume 100, pages 672–673, 2015 HIGHLIGHTS AND BREAKTHROUGHS Bursting the bubble of melt inclusions†k JACOB B. LOWENSTERN1,* 1U.S. Geological Survey, Volcano Science Center, Menlo Park, California 94025, U.S.A. Abstract: Most silicate melt inclusions (MI) con- crystal and trapped liquid create conditions that strongly favor tain bubbles, whose significance has been alternately creation of a low-density phase. In studies of FI, the bubbles are calculated, pondered, and ignored, but rarely if ever studied intensively (Samson et al. 2003). Experimental heating directly explored. Moore et al. (2015) analyze the and homogenization provide insight into the temperature of en- bubbles, as well as their host glasses, and conclude trapment and the conditions of formation. Raman spectroscopy and other techniques can provide quantitative information on that they often hold the preponderance of CO2 in gas species within bubbles. the MI. Their findings entreat future researchers Surprisingly, little has been done to analyze the bubbles within to account for the presence of bubbles in MI when MI—perhaps partly because of interference from the surround- calculating volatile budgets, saturation pressures, ing glass greatly complicates spectroscopic and other analytical and eruptive flux. Keywords: Melt inclusion, glass methods. Many authors recognize that bubbles can contain a inclusion, bubble, volatile, CO2 significant percentage of the volatiles in an inclusion, particularly for those with low solubility in the melt such as CO2 (Anderson On page 806, of this issue, Lowell Moore and colleagues and Brown 1993). But there is little consensus on how to account contribute an exciting, scholarly, and admirably thorough trea- for the presence of bubbles.
    [Show full text]
  • Understanding a Volcano Through a Droplet: a Melt Inclusion Approach
    Journal of Geochemical Exploration 171 (2016) 4–19 Contents lists available at ScienceDirect Journal of Geochemical Exploration journal homepage: www.elsevier.com/locate/jgeoexp Understanding a volcano through a droplet: A melt inclusion approach C. Cannatelli a,b,⁎,A.L.Dohertya, R. Esposito c,A.Limaa, B. De Vivo a a Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli Federico II, Italy b Department of Geology and Andean Geothermal Centre of Excellence (CEGA), Universidad de Chile, Plaza Ercilla 803, Santiago, Chile c Earth, Planetary and Space Sciences, UC Los Angeles, CA, USA article info abstract Article history: This review paper is intended to be a guideline to novices on how to conduct research on silicate melt inclusions Received 29 January 2015 in volcanic environments, which analytical techniques are more suitable to gather the desired data and the major Revised 9 July 2015 pitfalls scientist may encounter. Silicate melt inclusions (SMIs) are small quantities of silicate melt that are Accepted 3 October 2015 trapped in minerals during their growth or crystallization. They contain liquids formed in equilibrium with Available online 23 October 2015 their host minerals and therefore record the liquid line of descent of magmatic systems. Upon trapping, SMIs be- come ideally closed to the surrounding environment, and behave as time capsules, giving important information Keywords: Melt inclusions about processes that originated magmas and the nature of their mantle source. A melt inclusions investigation
    [Show full text]
  • Melt Inclusions in Chassignites: a Connection Between Martian Meteorites and in Situ Evolved Rocks at Gale Crater
    51st Lunar and Planetary Science Conference (2020) 2342.pdf MELT INCLUSIONS IN CHASSIGNITES: A CONNECTION BETWEEN MARTIAN METEORITES AND IN SITU EVOLVED ROCKS AT GALE CRATER. P. Wu1, E. Gazel1, and A. Udry2 1Department of Earth and Space Sciences, Cornell University ([email protected], [email protected]); 2Department of Geoscience, UNLV ([email protected]). Introduction: UnderstandinG the compositional Methods: We used six parental magma composi- diversity of igneous rocks is the key to investigate tions calculated from NWA 2737 melt inclusions by conditions of meltinG and sources within the martian He et al. [3] as startinG compositions for the modeling. interior. Meteorites, our only martian samples, can be He et al. [3] analyzed nine melt inclusions in a sinGle analyzed with the most advanced laboratory analytical thin section of NWA 2737. Measured phase composi- techniques and thus has dominated our knowledge of tions and phase abundances are used to calculate the martian iGneous chemistry. Most martian meteorites bulk composition of inclusions [3]. are classified into three major cateGories, sherGottite, AmonG the nine melt inclusions, olivine, low-Ca nakhlite, and chassignite (SNC). As a type of olivine pyroxene, kaersutitic amphibole, augite, apatite, chro- cumulates with abundant melt inclusions, chassiGnites mite, sulfide, alkali-rich Glass, and some Ti-biotite can provide key information on the compositions of were identified [3]. Since MI-4 and MI-5 are likely parental magmas, volatile budgets, and early crystalli- off-center cuts and MI-6 includes some biotite and zation processes. Chassigny, Northwest Africa (NWA) may represent composite Grains, we excluded MI-4, 2737 and Northwest Africa (NWA) 8694 are the only MI-5, and MI-6 from our study.
    [Show full text]
  • Basaltic Explosive Volcanism: Constraints from Deposits and Models B.F
    ARTICLE IN PRESS Chemie der Erde 68 (2008) 117–140 www.elsevier.de/chemer INVITED REVIEW Basaltic explosive volcanism: Constraints from deposits and models B.F. HoughtonÃ, H.M. Gonnermann Department of Geology and Geophysics, University of Hawai’i at Manoa, Honolulu, HI 96822, USA Received 13 March 2008; accepted 10 April 2008 Abstract Basaltic pyroclastic volcanism takes place over a range of scales and styles, from weak discrete Strombolian 2 3 1 7 8 1 explosions ( 10 –10 kg sÀ ) to Plinian eruptions of moderate intensity (10 –10 kg sÀ ). Recent well-documented historical eruptions from Etna, Kı¯lauea and Stromboli typify this diversity. Etna is Europe’s largest and most voluminously productive volcano with an extraordinary level and diversity of Strombolian to subplinian activity since 1990. Kı¯lauea, the reference volcano for Hawaiian fountaining, has four recent eruptions with high fountaining (4400 m) activity in 1959, 1960, 1969 (–1974) and 1983–1986 (–2008); other summit (1971, 1974, 1982) and flank eruptions have been characterized by low fountaining activity. Stromboli is the type location for mildly explosive Strombolian eruptions, and from 1999 to 2008 these persisted at a rate of ca. 9 per hour, briefly interrupted in 2003 and 2007 by vigorous paroxysmal eruptions. Several properties of basaltic pyroclastic deposits described here, such as bed geometry, grain size, clast morphology and vesicularity, and crystal content are keys to understand the dynamics of the parent eruptions. The lack of clear correlations between eruption rate and style, as well as observed rapid fluctuations in eruptive behavior, point to the likelihood of eruption style being moderated by differences in the fluid dynamics of magma and gas ascent and the mechanism by which the erupting magma fragments.
    [Show full text]
  • High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions
    REPORTS and the catalyst tolerates useful substrate func- 10. P. P. Fu, R. G. Harvey, Chem. Rev. 78, 317 (1978). 25. L. H. Heitman et al., J. Med. Chem. 52, 2036 tional groups, including aromatic and heteroatom 11. T. Moriuchi, K. Kikushima, T. Kajikawa, T. Hirao, (2009). Tetrahedron Lett. 50, 7385 (2009). 26. R. A. Sheldon, J. M. Sobczak, J. Mol. Catal. 68, substituents. With the development of improved 12.C.S.Yi,D.W.Lee,Organometallics 28, 947 1 (1991). methods for safe and scalable aerobic oxidation (2009). 27. J. E. Bercaw, N. Hazari, J. A. Labinger, J. Org. Chem. 73, reactions (30), dehydrogenation methods of this 13.P.F.Schuda,W.A.Price,J. Org. Chem. 52, 1972 8654 (2008). type could have an important impact on laboratory- (1987). 28. J. E. Bercaw, N. Hazari, J. A. Labinger, P. F. Oblad, Angew. Chem. Int. Ed. 47, 9941 (2008). and industrial-scale chemical synthesis. 14. J. Muzart, J. P. Pete, J. Mol. Catal. 15, 373 (1982). 15. T. T. Wenzel, J. Chem. Soc. Chem. Commun. 1989, 932 29. G. E. Dobereiner, R. H. Crabtree, Chem. Rev. 110,681 (1989). (2010). 30. X. Ye, M. D. Johnson, T. Diao, M. H. Yates, S. S. Stahl, References and Notes 16. J. Muzart, Eur. J. Org. Chem. 2010, 3779 (2010). Green Chem. 12, 1180 (2010). 1. J. H. P. Tyman, Synthetic and Natural Phenols (Elsevier, Acknowledgments: We are grateful to the NIH New York, 1996). 17. D. R. Buckle, in Encyclopedia of Reagents for Organic Synthesis, D. Crich, Ed. (Wiley, New York, 2010).
    [Show full text]
  • And Ground-Based Geophysical Data Tracking of Magma Migration in Shallow Feeding System of Mount Etna Volcano
    remote sensing Article Space- and Ground-Based Geophysical Data Tracking of Magma Migration in Shallow Feeding System of Mount Etna Volcano Marco Laiolo 1,* , Maurizio Ripepe 2, Corrado Cigolini 1, Diego Coppola 1, Massimo Della Schiava 2, Riccardo Genco 2, Lorenzo Innocenti 2, Giorgio Lacanna 2, Emanuele Marchetti 2, Francesco Massimetti 1,2 and Maria Cristina Silengo 2 1 Dipartimento di Scienze della Terra, Università di Torino, V. Valperga Caluso 4; 10125 Torino, Italy; [email protected] (C.C.); [email protected] (D.C.); [email protected] (F.M.) 2 Dipartimento di Scienze della Terra, Università di Firenze, V. G. La Pira 4; 50121 Firenze, Italy; maurizio.ripepe@unifi.it (M.R.); massimo.dellaschiava@unifi.it (M.D.S.); riccardo.genco@unifi.it (R.G.); lorenzo.innocenti@unifi.it (L.I.); giorgio.lacanna@unifi.it (G.L.); emanuele.marchetti@unifi.it (E.M.); [email protected] (M.C.S.) * Correspondence: [email protected] Received: 29 April 2019; Accepted: 16 May 2019; Published: 18 May 2019 Abstract: After a month-long increase in activity at the summit craters, on 24 December 2018, the Etna volcano experienced a short-lived lateral effusive event followed by a rapid resumption of low-level explosive and degassing activity at the summit vents. By combining space (Moderate Resolution Imaging Spectroradiometer; MODIS and SENTINEL-2 images) and ground-based geophysical data, we track, in near real-time, the thermal, seismic and infrasonic changes associated with Etna’s activity during the September–December 2018 period. Satellite thermal data reveal that the fissural eruption was preceded by a persistent increase of summit activity, as reflected by overflow episodes in New SouthEast Crater (NSE) sector.
    [Show full text]
  • A Melt Inclusion Study on Volatile Abundances in the Lunar Mantle
    Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 249 (2019) 17–41 www.elsevier.com/locate/gca A melt inclusion study on volatile abundances in the lunar mantle Peng Ni (倪鹏) a,⇑, Youxue Zhang (张有学) a, Sha Chen (陈沙) a, Joel Gagnon b a Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA b Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada Received 22 December 2017; accepted in revised form 23 December 2018; Available online 08 January 2019 Abstract Earth’s Moon was thought to be highly depleted in volatiles due to its formation by a giant impact. Over the last decade, however, evidence has been found in apatites, lunar volcanic glass beads, nominally anhydrous minerals and olivine-hosted melt inclusions, to support a relatively ‘‘wet” Moon. In particular, based on H2O/Ce, F/Nd, and S/Dy ratios, recent melt inclusion (MI) work estimated volatile (H2O, F, and S) abundances in lunar rocks to be similar to or slightly lower than the terrestrial depleted mantle. Uncertainties still occur, however, in whether the limited numbers of lunar samples studied are representative of the primitive lunar mantle, and whether the high H2O/Ce ratio for pyroclastic sample 74220 is due to local heterogeneity. In this paper, we report major element, trace element, volatile, and transition metal data in MIs for 5 mare basalt samples (10020, 12040, 15016, 15647 and 74235) and a pyroclastic deposit (74220). With our new lunar MI data, H2O/Ce ratios are still found to vary significantly among different lunar samples, from 50 for 74220, to 9 for 10020, 3 for 74235, 1.7 to 0.9 for 12008, 15016, and 15647, and 0.5 for 12040.
    [Show full text]
  • Mineral-Hosted Melt Inclusions How Do We Read the Stories They Have to Tell?
    Mineral-Hosted Melt Inclusions How do we read the stories they have to tell? Woods Hole Oceanographic Institution Woods Hole, MA, USA August 10-12, 2018 Thank you to our sponsors. Mineral-Hosted Melt Inclusions, Woods Hole, MA, USA, 10-12 August 2018 Welcome to Mineral-Hosted Melt Inclusions: How do we read the stories they have to tell? Thank you to our sponsors. The study of mineral-hosted melt inclusions traces Over the next two days, fifteen invited speakers its origins all the way back to the mid-nineteenth will discuss the state of our knowledge with respect century. In 1857, Henry Clifton Sorby recognized to mineral-hosted melt inclusions. Topics range that the presence of “glass cavities” demonstrates from the origin and fidelity of mineral-hosted that the host crystals had a magmatic – rather than melt inclusions to the application of state-of-the- an aqueous – origin and used this observation to art micro-analytical techniques to quantify their argue that granite is the product of fusion rather compositions. Each talk will be followed by a than precipitation from a fluid. Today, these small discussion session intended to promote interaction pockets of silicate melt entrapped within growing among all the attendees. One objective is to mineral grains are used to study everything from develop guidelines for publication of data from melt mantle heterogeneity to pre-eruptive magmatic inclusion studies to be summarized in a collegial volatiles and the oxidation state of the upper mantle. manuscript that the organizers will submit for The information recorded in melt inclusions is publication shortly after the workshop.
    [Show full text]
  • New Insights from Olivine-Hosted Melt Inclusions from Multiple Samples
    JOURNAL OF PETROLOGY VOLUME 53 NUMBER 4 PAGE S 6 65 ^ 6 98 2012 doi:10.1093/petrology/egr075 Melting and Crustal Processes at the FAMOUS Segment (Mid-Atlantic Ridge): New Insights from Olivine-hosted Melt Inclusions from Multiple Samples MURIEL LAUBIER*, ALLISON GALE AND CHARLES H. LANGMUIR DEPARTMENT OF EARTH AND PLANETARY SCIENCES, HARVARD UNIVERSITY, 20 OXFORD STREET, CAMBRIDGE, Downloaded from MA 02138, USA RECEIVED SEPTEMBER 29, 2010; ACCEPTED DECEMBER 2, 2011 ADVANCE ACCESS PUBLICATION FEBRUARY 10, 2012 http://petrology.oxfordjournals.org/ Most published studies of olivine-hosted melt inclusions from (MREE/HREE) ratios.The high Al2O3 and low SiO2 contents, mid-ocean ridges have been based on a single sample. Here we present as well as positive Sr anomalies in some of the high-Al melt inclu- a comprehensive melt inclusion study of major and trace elements sions, are best explained by assimilation of plagioclase-bearing cu- from a single ocean ridge segment, the FAMOUS segment of the mulates. The trace element variability in the high-Mg melt Mid-Atlantic Ridge. The melt inclusion dataset includes 312 inclusions is not consistent with a simple continuous melting column olivine-hosted (Mg-number 85^92) melt inclusions from 14 samples and requires pooling of near-fractional melts within the melting distributed along the segment.This permits a more comprehensive as- regime and a variable mantle source composition. Because the mean at Harvard University on June 4, 2012 sessment of the variability within melt inclusions from a single composition of these melt inclusions reflects greater extents of melting region, and of the relationship between melt inclusion and lava com- than the lavas, we propose that the melt inclusions come from the positions.
    [Show full text]
  • 9 Microthermometry and Raman Spectroscopy Of
    Rom. J. Mineral Deposits, vol. 92 (2019), No. 1-2, p. 9-32 MICROTHERMOMETRY AND RAMAN SPECTROSCOPY OF FLUID AND MELT INCLUSIONS IN THE ALPINE PORPHYRY COPPER DEPOSITS FROM ROMANIA: INSIGHTS ON MICROMETALLOGENY Ioan PINTEA1*, Sorin Silviu UDUBAŞA2, Elena Luisa IATAN3, Ion BERBELEAC3, Daniel BÎRGĂOANU1, Oana Claudia CIOBOTEA-BARBU1, Eduard GHINESCU1 1Geological Institute of Romania, 1, Caransebeș Str., 012271 Bucharest, Romania; 2Univ. of Bucharest, 1, N. Bălcescu Blv., 010041 Bucharest, Romania; 3Institute of Geodynamics of Romanian Academy, 19-21, J.-L. Calderon Str., 020032 Bucharest, Romania. * [email protected] Abstract: The paper presents complementary analyses of Raman spectroscopy and high-temperature microthermometry on fluid/melt inclusions from alpine porphyry copper and associated epithermal and skarn deposits from Romania. It reveals a complex phase association and multistage evolution during the magmatic-to- hydrothermal processes underlying the deep-seated MASH zones of the related subduction factories. Important differences in P-T-X properties were found for the main mineralizing processes between the two porphyry copper deposit clusters, one in the Banat region of the South Carpathians (Upper Cretaceous) and other in the Metaliferi Mountains of the South Apuseni Mountains (Miocene). These differences ranged up to 300oC in temperature, more than 1-3 kbar of pressure and 20-30 wt% NaCl eq. salinity. Although the magmatic-hydrothermal transitions are characterized by melt-melt-fluid immiscibility at high P-T conditions
    [Show full text]
  • Monitoring Active Volcanoes Using a Handheld Thermal Camera
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Earth-prints Repository Monitoring active volcanoes using a handheld thermal camera Sonia Calvari, Luigi Lodato and Letizia Spampinato Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Catania, Piazza Roma 2, 95123 Catania (Italy) Abstract Thermal imaging has recently been introduced in volcanology to analyse a number of different volcanic processes. This system allows us to detect magma movements within the summit conduits of active volcanoes, and then to reveal volcanic activity within the craters even through the thick curtain of gases usually released by volcanoes such as Mt Etna and Stromboli. Thermal mapping is essential during effusive eruptions, since it distinguishes lava flows of different age and concealed lava tubes’ path, improving hazard evaluation. Recently, thermal imaging has also been applied to reveal failure planes and instability on the flanks of active volcanoes. Excellent results have been obtained in terms of volcanic prediction during the two recent eruptions of Mt Etna and Stromboli, both occurred in 2002-2003. On Etna, thermal images monthly recorded on the summit of the volcano revealed the opening of fissure systems several months in advance. After the onset of the flank eruption, daily thermal mapping allowed us to monitor a complex lava flow field spreading within a forest, below a thick plume of ash and gas. At Stromboli, helicopter-borne thermal surveys allowed us to recognise the opening of fractures along the Sciara del Fuoco, one hour before the large failure that caused severe destruction on the island on 30 December 2002.
    [Show full text]