G:Profiler: a Web Server for Functional Enrichment Analysis And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Curated Database of Experimentally Identified Interaction Proteins Of
International Journal of Molecular Sciences Article OGT Protein Interaction Network (OGT-PIN): A Curated Database of Experimentally Identified Interaction Proteins of OGT Junfeng Ma 1,* , Chunyan Hou 2, Yaoxiang Li 1 , Shufu Chen 3 and Ci Wu 1 1 Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; [email protected] (Y.L.); [email protected] (C.W.) 2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; [email protected] 3 School of Engineering, Pennsylvania State University Behrend, Erie, PA 16563, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-202-6873802 Abstract: Interactions between proteins are essential to any cellular process and constitute the basis for molecular networks that determine the functional state of a cell. With the technical advances in recent years, an astonishingly high number of protein–protein interactions has been revealed. However, the interactome of O-linked N-acetylglucosamine transferase (OGT), the sole enzyme adding the O-linked β-N-acetylglucosamine (O-GlcNAc) onto its target proteins, has been largely undefined. To that end, we collated OGT interaction proteins experimentally identified in the past several decades. Rigorous curation of datasets from public repositories and O-GlcNAc-focused publications led to the identification of up to 929 high-stringency OGT interactors from multiple species studied (including Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila melanogaster, Citation: Ma, J.; Hou, C.; Li, Y.; Chen, S.; Wu, C. OGT Protein Interaction Arabidopsis thaliana, and others). Among them, 784 human proteins were found to be interactors Network (OGT-PIN): A Curated of human OGT. -
FLAME: a Web Tool for Functional and Literature Enrichment Analysis of Multiple Gene Lists
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.446692; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. FLAME: a web tool for functional and literature enrichment analysis of multiple gene lists Foteini Thanati1,†, Evangelos Karatzas1,†, Fotis A. Baltoumas1, Dimitrios J. Stravopodis2, Aristides G. Eliopoulos3,4,5, Georgios A. Pavlopoulos1,4,* 1 Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Athens, Greece 2 Department of Biology, National and Kapodistrian University of Athens, Athens, Greece 3 Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece 4 Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece 5 Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece †Equally contributing authors *To whom correspondence should be addressed. Tel: +30-210-9656310; Fax: +30-210-9653934; Email: [email protected] Present Address: Georgios A. Pavlopoulos, Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", 34 Fleming Street, Vari, 16672, Greece ABSTRACT Functional enrichment is a widely used method for interpreting experimental results by identifying classes of proteins/genes associated with certain biological functions, pathways, diseases or phenotypes. Despite the variety of existing tools, most of them can process a single list per time, thus making a more combinatorial analysis more complicated and prone to errors. In this article, we present FLAME, a web tool for combining multiple lists prior to enrichment analysis. -
Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets
UC San Diego UC San Diego Previously Published Works Title Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Permalink https://escholarship.org/uc/item/44d0x399 Journal Nature communications, 10(1) ISSN 2041-1723 Authors Zhou, Yingyao Zhou, Bin Pache, Lars et al. Publication Date 2019-04-03 DOI 10.1038/s41467-019-09234-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE https://doi.org/10.1038/s41467-019-09234-6 OPEN Metascape provides a biologist-oriented resource for the analysis of systems-level datasets Yingyao Zhou1, Bin Zhou1, Lars Pache2, Max Chang 3, Alireza Hadj Khodabakhshi1, Olga Tanaseichuk1, Christopher Benner3 & Sumit K. Chanda2 A critical component in the interpretation of systems-level studies is the inference of enri- ched biological pathways and protein complexes contained within OMICs datasets. Suc- 1234567890():,; cessful analysis requires the integration of a broad set of current biological databases and the application of a robust analytical pipeline to produce readily interpretable results. Metascape is a web-based portal designed to provide a comprehensive gene list annotation and analysis resource for experimental biologists. In terms of design features, Metascape combines functional enrichment, interactome analysis, gene annotation, and membership search to leverage over 40 independent knowledgebases within one integrated portal. Additionally, it facilitates comparative analyses of datasets across multiple independent and orthogonal experiments. Metascape provides a significantly simplified user experience through a one- click Express Analysis interface to generate interpretable outputs. Taken together, Metascape is an effective and efficient tool for experimental biologists to comprehensively analyze and interpret OMICs-based studies in the big data era. -
G:Profiler: a Web Server for Functional Enrichment Analysis And
Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz369 g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz369/5486750 by ELNET Group Account user on 12 June 2019 Uku Raudvere 1,†, Liis Kolberg 1,†,IvanKuzmin 1, Tambet Arak1, Priit Adler1,2, Hedi Peterson 1,2,* and Jaak Vilo 1,2,3,* 1Institute of Computer Science, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia, 2Quretec Ltd, Ulikooli¨ 6a, 51003, Tartu, Estonia and 3Software Technology and Applications Competence Centre, Ulikooli¨ 2, 51003 Tartu, Estonia Received February 27, 2019; Revised April 07, 2019; Editorial Decision April 16, 2019; Accepted April 29, 2019 ABSTRACT novel findings against the body of previous knowledge. The landscape of enrichment analysis tools is diverse covering Biological data analysis often deals with lists of different data sources, species, identifier types and methods. genes arising from various studies. The g:Profiler While the majority of services provide mappings to the most toolset is widely used for finding biological cate- widely used knowledge resource Gene Ontology (GO) (6), gories enriched in gene lists, conversions between the selection of other data sources varies between the tools. gene identifiers and mappings to their orthologs. The For example, Human Phenotype Ontology (7) is available mission of g:Profiler is to provide a reliable service in Enrichr, WebGestalt, Metascape and g:Profiler (1–3,8), based on up-to-date high quality data in a conve- while mirTarBase miRNA target information is included nient manner across many evidence types, identi- only in a few tools, e.g. -
Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets
ARTICLE https://doi.org/10.1038/s41467-019-09234-6 OPEN Metascape provides a biologist-oriented resource for the analysis of systems-level datasets Yingyao Zhou1, Bin Zhou1, Lars Pache2, Max Chang 3, Alireza Hadj Khodabakhshi1, Olga Tanaseichuk1, Christopher Benner3 & Sumit K. Chanda2 A critical component in the interpretation of systems-level studies is the inference of enri- ched biological pathways and protein complexes contained within OMICs datasets. Suc- 1234567890():,; cessful analysis requires the integration of a broad set of current biological databases and the application of a robust analytical pipeline to produce readily interpretable results. Metascape is a web-based portal designed to provide a comprehensive gene list annotation and analysis resource for experimental biologists. In terms of design features, Metascape combines functional enrichment, interactome analysis, gene annotation, and membership search to leverage over 40 independent knowledgebases within one integrated portal. Additionally, it facilitates comparative analyses of datasets across multiple independent and orthogonal experiments. Metascape provides a significantly simplified user experience through a one- click Express Analysis interface to generate interpretable outputs. Taken together, Metascape is an effective and efficient tool for experimental biologists to comprehensively analyze and interpret OMICs-based studies in the big data era. 1 Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA. 2 Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA. 3 Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Correspondence and requests for materials should be addressed to Y.Z. -
FLAME: a Web Tool for Functional and Literature Enrichment Analysis of Multiple Gene Lists
biology Article FLAME: A Web Tool for Functional and Literature Enrichment Analysis of Multiple Gene Lists Foteini Thanati 1,†, Evangelos Karatzas 1,† , Fotis A. Baltoumas 1 , Dimitrios J. Stravopodis 2 , Aristides G. Eliopoulos 3,4,5 and Georgios A. Pavlopoulos 1,4,* 1 Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, 16672 Vari, Greece; [email protected] (F.T.); karatzas@fleming.gr (E.K.); baltoumas@fleming.gr (F.A.B.) 2 Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece; [email protected] 3 Department of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; [email protected] 4 Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece 5 Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece * Correspondence: pavlopoulos@fleming.gr † Equally contributing authors. Simple Summary: Manipulation of multiple gene lists when going through a functional enrichment analysis is often a hefty task. In this article, we present FLAME, a web application that facilitates such multiple-list manipulations, enabling the construction of intersections and unions among multiple gene lists for further enrichment analysis. Reported results are presented via multiple interactive Citation: Thanati, F.; Karatzas, E.; Baltoumas, F.A.; Stravopodis, D.J.; viewers such as heatmaps, barcharts, Manhattan plots, and networks. Eliopoulos, A.G.; Pavlopoulos, G.A. FLAME: A Web Tool for Functional Abstract: Functional enrichment is a widely used method for interpreting experimental results by and Literature Enrichment Analysis identifying classes of proteins/genes associated with certain biological functions, pathways, diseases, of Multiple Gene Lists.