Giant Planets Transiting Giant Stars a DISSERTATION SUBMITTED TO

Total Page:16

File Type:pdf, Size:1020Kb

Giant Planets Transiting Giant Stars a DISSERTATION SUBMITTED TO Giant Planets Transiting Giant Stars A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I AT MANOA¯ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ASTRONOMY August 2019 By Samuel Kai Grunblatt Dissertation Committee: Daniel Huber, Chairperson Eric J. Gaidos Andrew W. Howard Christoph J. Baranec Rolf-Peter Kudritzki Jonathan P. Williams c Copyright 2019 by Samuel K. Grunblatt All Rights Reserved ii To I. Piehler, H. Grunblatt, and H. and E. Blake iii Acknowledgements As my six years as a graduate student in Hawaii draws to a close, I'm grateful to a wide range of individuals who have made this thesis possible. Without a broad network of support and enthusiasm for my research, obtaining this degree would not have been possible. A famous scientist once said, "If I have seen further it is by standing on the shoulders of Giants." Though my achievements certainly pale in comparison, the sentiment rings true to my work. Thank you to all of you who helped me get to this point{it wouldn't have happened without you. First, I'd like to acknowledge the support of the US taxpayers. Without the funding that all of us provide, the NASA and NSF funds used to pay my salary would not be available. I'd also like to thank the citizens of the state of Hawaii. Your (retroactive) choice to allow scientific research at the summit of Maunakea was essential to the success of this research. Given the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawai`ian community, I am very grateful to have been given the opportunity to use this unique place to best further exoplanet and astronomical studies for the common good. Next, I'd like to thank my advisors. I'm incredibly honored to be the first graduating Ph.D. student of Dr. Daniel Huber. I will be forever grateful for running into you at the IAU meeting in 2015, where you offered a thesis project to me in a 15 minute conversation in the lobby. You took a potentially life-changing risk on me, and then never hesitated to answer my questions or make yourself available to me when I needed it most. More importantly, you've shown me how to be an outstanding scientist yet a well-balanced person at the same time. But I've been lucky enough to have many other great mentors throughout my scientific career. I'd also like to thank Eric Gaidos, for similarly taking a leap of faith to become the chair of my thesis committee before ever having worked with me. Your intellectual curiosity inspires me every time I come into contact with it. Andrew Howard generously gave me the first taste of publishable-quality iv research, and continues to inspire my interest in exoplanets and attention to detail. Stuart Jefferies taught me the beauty and importance of being able to explain difficult concepts in approachable terms. Rolf Kudritzki made the value of this even clearer in my most memorable class as a graduate student. Before I arrived in Hawaii, there were many others who helped me onto the proper path. Joe Patterson{thanks for being more than happy to help out an eager undergrad, and keeping his astronomy enthusiasm alive and well throughout those four years. Your lack of hesitation to get me involved in observing has played a huge role in my life since then. Thanks to Chryssa Kouvelioutou and Jochen Greiner, for taking the time to give me my first tastes of doing research at an institute, and giving me the confidence in my research I needed to continue. Thanks to Dr. Fred Chromey for taking the time to teach a high schooler how to do astronomy research and use IRAF even when he had nothing to gain from it. Thanks to Mr. Kirk Reinhardt for believing in the potential of Kingston High School students and always giving us access to the tools we needed to succeed. And lastly, thanks to Dr. Norbert Magnussen for inspiring and encouraging me to become an astrophysicist almost twenty years ago. I'd also like to thank all of my fellow students for their support along the way. Thanks to all of the UH IfA incoming grad classes of 2012, 2013, and 2014 for collaborating with me on homeworks and commiserating when things got tougher than anything I had seen in undergrad. A special thanks to my former housemates, Conor and Max, for driving me insane and later keeping me sane as we all faced this new challenge together. And of course to my apartment mate of the past four years, Travis{your patience is a thing of legend, and your friendship is something I'll treasure for the rest of my life. Thanks for all the great memories and conversations, scientific and otherwise. And to my own student, Stephanie: mentoring you over the past two years has taught me so much, and your success and drive inspires me every day. I'm so proud of what you've accomplished, and I can't wait to see where you're headed next. And finally, I'd like to thank my loving family. Whether it was the ridiculously large body of knowledge of Dad's or the unrivaled work ethic of Mom that inspired me to make this choice, you have both supported me 100% without ever giving it a second thought. You gave me the self-confidence, ambition, and downright desire to make this happen. Thanks to my sister Eva, for being one of my closest friends and the best sister I could ever hope for. I'd also like to thank my grandmothers, Inge Piehler and Hilda Grunblatt, and my \adopted" grandparents Helen and Ed Blake for always v believing in me and making me into the person I am now. I know that you'd be here supporting me every chance you got if you were still here today, and for that I can never thank you enough. vi Abstract Every Sun-like star will eventually evolve into a red giant, a transition which can profoundly affect the evolution of a surrounding planetary system. The timescale of dynamical planet evolution and orbital decay has important implications for planetary habitability, as well as post-main sequence star and planet interaction, evolution and internal structure. In this thesis, I investigate the population of giant planets transiting low luminosity red giant branch stars observed by the NASA K2 mission. I report the discovery of two new planets orbiting evolved stars, and confirm the existence of a third, doubling the number of evolved (R∗ > 3.5 R ,Teff < Teff; ) stars with known transiting planets. By developing new tools to mitigate stellar variability in evolved star light curves, I robustly measure the planetary radii of these systems. I find that all of these planets are inflated, the first evidence that planets may be inflated directly by an increase in incident stellar radiation, and thus comprise a previously unknown class of re-inflated planets. I also obtain radial velocity measurements of planets orbiting evolved stars to constrain their orbital properties and the efficiency of re-inflation. I find that close-in giant planets orbiting evolved stars display a preference for moderately eccentric orbits, a previously predicted outcome of late-stage planetary system evolution. Finally, I perform a comprehensive planet occurrence study using all oscillating low luminosity red giant branch stars observed in the first 16 campaigns of K2. I measure stellar masses and radii to 6% precision or better using asteroseismology, and find a comparable fraction of close-in giant planets around evolved stars as main sequence stars. A higher fraction of inflated close-in gas giants is also found around evolved stars. These discoveries imply that planet engulfment happens more slowly than previously predicted, and that the effects of stellar evolution on the occurrence of close-in planets larger than Jupiter is not significant until stars have begun ascending substantially up the red giant branch (& 6 R ). Further surveys of these stars by the NASA TESS mission will reveal the dependence of late-stage planetary evolution on star and planet properties. vii Table of Contents Acknowledgements . iv Abstract . vii List of Tables . xii List of Figures . xiii Chapter 1: Introduction . 1 1.1 Exoplanet Demographics . 2 1.1.1 Exoplanet surveys: a recent history . 2 1.1.2 The K2 Mission . 5 1.1.3 Planets around evolved stars . 6 1.2 Asteroseismology . 10 1.3 Gaussian Process Analysis . 12 Chapter 2: K2-97b: A (Re-?)Inflated Planet Orbiting a Red Giant Star . 16 2.1 Introduction . 16 2.2 Observations . 18 2.2.1 K2 Photometry . 18 2.2.2 Imaging with Keck/NIRC2 AO . 18 2.2.3 Spectroscopy with UH88/SNIFS, IRTF/SpeX, and Keck/HIRES . 18 2.2.4 Radial Velocity Measurements . 20 2.3 Host Star Characteristics . 21 2.3.1 Spectroscopic Analysis . 21 2.3.2 Asteroseismology . 22 2.4 Lightcurve Analysis and Planetary Parameters . 26 2.4.1 Gaussian process transit model . 26 viii 2.4.2 Radial Velocity Analysis: Planetary Confirmation and False Positive Assessment 30 2.5 Discussion . 33 2.5.1 Is EPIC 211351816.01 Inflated? . 33 2.5.2 Planet Inflation Scenarios . 34 2.5.3 Planetary Engulfment . 39 2.6 Conclusions . 40 Chapter 3: Seeing double with K2: Testing Re-inflation with Two Remarkably Similar Planets Around Red Giant Branch Stars . 41 3.1 Introduction . 41 3.2 Observations . 43 3.2.1 K2 Photometry .
Recommended publications
  • High Precision Photometry of Transiting Exoplanets
    McNair Scholars Research Journal Volume 3 Article 3 2016 High Precision Photometry of Transiting Exoplanets Maurice Wilson Embry-Riddle Aeronautical University and Harvard-Smithsonian Center for Astrophysics Jason Eastman Harvard-Smithsonian Center for Astrophysics John Johnson Harvard-Smithsonian Center for Astrophysics Follow this and additional works at: https://commons.erau.edu/mcnair Recommended Citation Wilson, Maurice; Eastman, Jason; and Johnson, John (2016) "High Precision Photometry of Transiting Exoplanets," McNair Scholars Research Journal: Vol. 3 , Article 3. Available at: https://commons.erau.edu/mcnair/vol3/iss1/3 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in McNair Scholars Research Journal by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Wilson et al.: High Precision Photometry of Transiting Exoplanets High Precision Photometry of Transiting Exoplanets Maurice Wilson1,2, Jason Eastman2, and John Johnson2 1Embry-Riddle Aeronautical University 2Harvard-Smithsonian Center for Astrophysics In order to increase the rate of finding, confirming, and characterizing Earth-like exoplanets, the MINiature Exoplanet Radial Velocity Array (MINERVA) was recently built with the purpose of obtaining the spectroscopic and photometric precision necessary for these tasks. Achieving the satisfactory photometric precision is the primary focus of this work. This is done with the four telescopes of MINERVA and the defocusing technique. The satisfactory photometric precision derives from the defocusing technique. The use of MINERVA’s four telescopes benefits the relative photometry that must be conducted. Typically, it is difficult to find satisfactory comparison stars within a telescope’s field of view when the primary target is very bright.
    [Show full text]
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • Arxiv:2007.10995V1
    Draft version July 23, 2020 Typeset using LATEX twocolumn style in AASTeX63 Transits of Known Planets Orbiting a Naked-Eye Star Stephen R. Kane,1 Selc¸uk Yalc¸ınkaya,2 Hugh P. Osborn,3,4,5 Paul A. Dalba,1, ∗ Louise D. Nielsen,6 Andrew Vanderburg,7, † Teo Mocnikˇ ,1 Natalie R. Hinkel,8 Colby Ostberg,1 Ekrem Murat Esmer,9 Stephane´ Udry,6 Tara Fetherolf,1 Ozg¨ ur¨ Bas¸turk¨ ,9 George R. Ricker,4 Roland Vanderspek,4 David W. Latham,10 Sara Seager,4,11,12 Joshua N. Winn,13 Jon M. Jenkins,14 Romain Allart,6 Jeremy Bailey,15 Jacob L. Bean,16 Francois Bouchy,6 R. Paul Butler,17 Tiago L. Campante,18,19 Brad D. Carter,20 Tansu Daylan,4, ‡ Magali Deleuil,3 Rodrigo F. Diaz,21 Xavier Dumusque,6 David Ehrenreich,6 Jonathan Horner,20 Andrew W. Howard,22 Howard Isaacson,23,20 Hugh R.A. Jones,24 Martti H. Kristiansen,25,26 Christophe Lovis,6 Geoffrey W. Marcy,23 Maxime Marmier,6 Simon J. O’Toole,27,28 Francesco Pepe,6 Darin Ragozzine,29 Damien Segransan,´ 6 C.G. Tinney,30 Margaret C. Turnbull,31 Robert A. Wittenmyer,20 Duncan J. Wright,20 and Jason T. Wright32 1Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA 2Ankara University, Graduate School of Natural and Applied Sciences, Department of Astronomy and Space Sciences, Tandogan, TR-06100, Turkey 3Aix-Marseille Universit, CNRS, CNES, Laboratoire d’Astrophysique de Marseille, France 4Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 5NCCR/PlanetS, Centre for Space & Habitability, University of Bern, Bern, Switzerland 6Observatoire de Gen`eve, Universit´ede Gen`eve, 51 ch.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Winter Observing Notes
    Wynyard Planetarium & Observatory Winter Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Winter Tour of the Sky with the Naked Eye NGC 457 CASSIOPEIA eta Cas Look for Notice how the constellations 5 the ‘W’ swing around Polaris during shape the night Is Dubhe yellowish compared 2 Polaris to Merak? Dubhe 3 Merak URSA MINOR Kochab 1 Is Kochab orange Pherkad compared to Polaris? THE PLOUGH 4 Mizar Alcor Figure 1: Sketch of the northern sky in winter. North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. To your right is a group of stars like the outline of a saucepan standing up on it’s handle. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The top two stars are called the Pointers. Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white-hot. 2. Use the Pointers to guide you to the left, to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the right are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. Check with binoculars. © Rob Peeling, CaDAS, 2007 version 2.0 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Winter Polaris, Kochab and Pherkad mark the constellation Ursa Minor, the Little Bear.
    [Show full text]
  • Exoplanet Exploration Collaboration Initiative TP Exoplanets Final Report
    EXO Exoplanet Exploration Collaboration Initiative TP Exoplanets Final Report Ca Ca Ca H Ca Fe Fe Fe H Fe Mg Fe Na O2 H O2 The cover shows the transit of an Earth like planet passing in front of a Sun like star. When a planet transits its star in this way, it is possible to see through its thin layer of atmosphere and measure its spectrum. The lines at the bottom of the page show the absorption spectrum of the Earth in front of the Sun, the signature of life as we know it. Seeing our Earth as just one possibly habitable planet among many billions fundamentally changes the perception of our place among the stars. "The 2014 Space Studies Program of the International Space University was hosted by the École de technologie supérieure (ÉTS) and the École des Hautes études commerciales (HEC), Montréal, Québec, Canada." While all care has been taken in the preparation of this report, ISU does not take any responsibility for the accuracy of its content. Electronic copies of the Final Report and the Executive Summary can be downloaded from the ISU Library website at http://isulibrary.isunet.edu/ International Space University Strasbourg Central Campus Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden Tel +33 (0)3 88 65 54 30 Fax +33 (0)3 88 65 54 47 e-mail: [email protected] website: www.isunet.edu France Unless otherwise credited, figures and images were created by TP Exoplanets. Exoplanets Final Report Page i ACKNOWLEDGEMENTS The International Space University Summer Session Program 2014 and the work on the
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Arxiv:2001.10147V1
    Magnetic fields in isolated and interacting white dwarfs Lilia Ferrario1 and Dayal Wickramasinghe2 Mathematical Sciences Institute, The Australian National University, Canberra, ACT 2601, Australia Adela Kawka3 International Centre for Radio Astronomy Research, Curtin University, Perth, WA 6102, Australia Abstract The magnetic white dwarfs (MWDs) are found either isolated or in inter- acting binaries. The isolated MWDs divide into two groups: a high field group (105 − 109 G) comprising some 13 ± 4% of all white dwarfs (WDs), and a low field group (B < 105 G) whose incidence is currently under investigation. The situation may be similar in magnetic binaries because the bright accretion discs in low field systems hide the photosphere of their WDs thus preventing the study of their magnetic fields’ strength and structure. Considerable research has been devoted to the vexed question on the origin of magnetic fields. One hypothesis is that WD magnetic fields are of fossil origin, that is, their progenitors are the magnetic main-sequence Ap/Bp stars and magnetic flux is conserved during their evolution. The other hypothesis is that magnetic fields arise from binary interaction, through differential rotation, during common envelope evolution. If the two stars merge the end product is a single high-field MWD. If close binaries survive and the primary develops a strong field, they may later evolve into the arXiv:2001.10147v1 [astro-ph.SR] 28 Jan 2020 magnetic cataclysmic variables (MCVs). The recently discovered population of hot, carbon-rich WDs exhibiting an incidence of magnetism of up to about 70% and a variability from a few minutes to a couple of days may support the [email protected] [email protected] [email protected] Preprint submitted to Journal of LATEX Templates January 29, 2020 merging binary hypothesis.
    [Show full text]
  • REVIEW Doi:10.1038/Nature13782
    REVIEW doi:10.1038/nature13782 Highlights in the study of exoplanet atmospheres Adam S. Burrows1 Exoplanets are now being discovered in profusion. To understand their character, however, we require spectral models and data. These elements of remote sensing can yield temperatures, compositions and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are made. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has frequently lagged behind ambition. I summarize the most productive, and at times novel, methods used to probe exoplanet atmospheres; highlight some of the most interesting results obtained; and suggest various broad theoretical topics in which further work could pay significant dividends. he modern era of exoplanet research started in 1995 with the Earth-like planet requires the ability to measure transit depths 100 times discovery of the planet 51 Pegasi b1, when astronomers detected more precisely. It was not long before many hundreds of gas giants were the periodic radial-velocity Doppler wobble in its star, 51 Peg, detected both in transit and by the radial-velocity method, the former Tinduced by the planet’s nearly circular orbit. With these data, and requiring modest equipment and the latter requiring larger telescopes knowledge of the star, the orbital period (P) and semi-major axis (a) with state-of-the-art spectrometers with which to measure the small could be derived, and the planet’s mass constrained. However, the incli- stellar wobbles. Both techniques favour close-in giants, so for many nation of the planet’s orbit was unknown and, therefore, only a lower years these objects dominated the bestiary of known exoplanets.
    [Show full text]
  • PLANETARY CANDIDATES OBSERVED by Kepler. VIII. a FULLY AUTOMATED CATALOG with MEASURED COMPLETENESS and RELIABILITY BASED on DATA RELEASE 25
    Draft version October 13, 2017 Typeset using LATEX twocolumn style in AASTeX61 PLANETARY CANDIDATES OBSERVED BY Kepler. VIII. A FULLY AUTOMATED CATALOG WITH MEASURED COMPLETENESS AND RELIABILITY BASED ON DATA RELEASE 25 Susan E. Thompson,1, 2, 3, ∗ Jeffrey L. Coughlin,2, 1 Kelsey Hoffman,1 Fergal Mullally,1, 2, 4 Jessie L. Christiansen,5 Christopher J. Burke,2, 1, 6 Steve Bryson,2 Natalie Batalha,2 Michael R. Haas,2, y Joseph Catanzarite,1, 2 Jason F. Rowe,7 Geert Barentsen,8 Douglas A. Caldwell,1, 2 Bruce D. Clarke,1, 2 Jon M. Jenkins,2 Jie Li,1 David W. Latham,9 Jack J. Lissauer,2 Savita Mathur,10 Robert L. Morris,1, 2 Shawn E. Seader,11 Jeffrey C. Smith,1, 2 Todd C. Klaus,2 Joseph D. Twicken,1, 2 Jeffrey E. Van Cleve,1 Bill Wohler,1, 2 Rachel Akeson,5 David R. Ciardi,5 William D. Cochran,12 Christopher E. Henze,2 Steve B. Howell,2 Daniel Huber,13, 14, 1, 15 Andrej Prša,16 Solange V. Ramírez,5 Timothy D. Morton,17 Thomas Barclay,18 Jennifer R. Campbell,2, 19 William J. Chaplin,20, 15 David Charbonneau,9 Jørgen Christensen-Dalsgaard,15 Jessie L. Dotson,2 Laurance Doyle,21, 1 Edward W. Dunham,22 Andrea K. Dupree,9 Eric B. Ford,23, 24, 25, 26 John C. Geary,9 Forrest R. Girouard,27, 2 Howard Isaacson,28 Hans Kjeldsen,15 Elisa V. Quintana,18 Darin Ragozzine,29 Avi Shporer,30 Victor Silva Aguirre,15 Jason H. Steffen,31 Martin Still,8 Peter Tenenbaum,1, 2 William F.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • Exoplanet Overview
    Exoplanet Properties, System Architectures and Host Stars John Asher Johnson Caltech Department of Astronomy What we knew in 1994 • Planets form in disks – Planets orbit in same direction as stellar spin, and in same direction as other planets. • Giant planets have circular orbits • Giant planets reside near where they formed, beyond the “iceline” • Giant planets have a ~10 MEarth core surrounded by a gaseous envelope What We Expected Rocky planets Gas giants far away in close High-Precision Radial Velocities 95% of known exoplanets have been discovered or confirmed by Doppler measurements Jupiter’s Doppler Signal Orbit Period Planet Mass Meters per second What We Found 4.2 days! 0.45 Jupiter masses Meters per second 51 Pegasi Ensemble Johnson 2009 Mass ecc 1.5 ms^-1 10-3 pixel Johnson, Butler et al. 2006 Low-mass planets Howard, Johnson, Marcy et al. 2009 OGLE-2005-BLG-390b Beaulieu et al. 2008 MP = 5.5 Mearth a = 2.6 AU 28% of apparently single-planet systems Multiplanetturn Systems out to have additional Are planets Common Wright et al. 2009 Hot Jupiters: A Problem and an Opportunity Hot Jupiters The Problem of Forming Hot Jupiters The “Ice Line” in situ formation unlikely Figure courtesy of Transit Demo Josh Winn Inclination: MP rather than MPsini 2 (RP/R*) : Radius Relative brightness Time The HATNet Planet Search Hungarian-made Automated Telescope Doppler measurements needed to confirm transiting planets Johnson, Winn, Cabrera, Carter (2009) WASP-10 Actual WASP-10 RP = 1.06 RJup Precision: 0.5 mmag precision UH 2.2m + OPTIC Mass-Radius Torres, Winn, Holman 2008 Weird interiors Knutson et al.
    [Show full text]