Sulforaphane Regulates Abnormal Lipid Metabolism Via Both ERS-Dependent XBP1/ACC &SCD1 and ERS-Independent SREBP/FAS Pathways

Total Page:16

File Type:pdf, Size:1020Kb

Sulforaphane Regulates Abnormal Lipid Metabolism Via Both ERS-Dependent XBP1/ACC &SCD1 and ERS-Independent SREBP/FAS Pathways View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of East Anglia digital repository www.mnf-journal.com Page 1 Molecular Nutrition & Food Research To Mol Nutrition and Food Res. Sulforaphane regulates abnormal lipid metabolism via both ERS-dependent XBP1/ACC &SCD1 and ERS-independent SREBP/FAS pathways Sicong Tian1,#, Baolong Li2,#, Peng Lei1, Xiuli Yang1, Xiaohong Zhang3,*, Yongping Bao4,*, Yujuan Shan1,* 1Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China. 2Heilongjiang University of Chinese Medicine, Harbin, 150040, China. 3Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Zhejiang, 315211, China. 4Norwich Medical School, University of East Anglia, Norwich NR4 7UQ UK. #Contributed equally to this work *Corresponding author Abbreviations 4-PBA 4-Phenyl Butyric Acid ACC1 Acetyl CoA Carboxylase 1 ERS Endoplasmic Reticulum Stress FAS Fatty Acid Synthase Received: 25-Aug-2017; Revised: 14-Jan-2018; Accepted: 17-Jan-2018 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/mnfr.201700737. This article is protected by copyright. All rights reserved. www.mnf-journal.com Page 2 Molecular Nutrition & Food Research IRE1 Inositol-requiring Enzyme-1 LDs Lipid Droplets NAFLD Non-alcoholic Fat Liver Disease PERK Protein Kinase-like ER Kinase PPC Polyene Phosphatidylcholine SCD1 Stearoyl-CoA Desaturase 1 SFN Sulforaphane SREBP-1c Sterol Regulatory Element Binding Protein-1c TC Cholesterol TG Triglyceride UPR Unfolded Protein Response XBP1 X-Box Binding Protein 1 HFD High Fat Diet VLDL Very-Low-Density Lipoproteins HMGCS HMG-CoA synthase HMGCR HMG-CoA reductase Keywords: sulforaphane; lipid metabolism; sterol regulatory element binding protein-1c; endoplasmic reticulum stress; lipogenic enzymes Abstract Scope: To investigate the effect of sulforaphane (SFN) on the abnormal lipid metabolism and underlying mechanisms. This article is protected by copyright. All rights reserved. www.mnf-journal.com Page 3 Molecular Nutrition & Food Research Methods and results: Models with abnormal lipid metabolism were established both in rats and human hepatocytes. Hepatic steatosis was detected by H&E and oil red O staining. The structure of endoplasmic reticulum was visualized by transmission electron microscopy. The expressions of X-box binding protein 1 (XBP1), protein kinase-like ER kinase (PERK), sterol regulatory element binding protein-1c (SREBP1c) and lipogenic enzymes were determined by real-time PCR and western blot analysis. SFN lowered the content of triglyceride and cholesterol. SFN alleviated the swelling of endoplasmic reticulum (ER) and decreased the perimeter of ER. SFN significantly decreased the expressions of acetyl CoA carboxylase 1 (ACC1), stearoyl-CoA desaturase 1 (SCD1) and fatty acid synthase. SFN inhibited SREBP1c by blocking the PERK. Meanwhile, SFN suppressed ACC1 and SCD1 via blocking the formation of splicing-type XBP1. The key roles of XBP1 and SREBP1c in SFN-reduced lipid droplets were confirmed by a timed sequence of measurement according to time points. Conclusion: SFN improved abnormal lipid metabolism via both ER stress -dependent and -independent pathways. Introduction The Westernization of dietary patterns in China may lead to the excessive intake of fats and accumulation of lipids in the body which can cause non-alcoholic fat liver disease (NAFLD), diabetes, obesity, cardiovascular disease, atherosclerosis, etc. [1-2]. In addition to the physical activities, the dietary habit is more critical way to be adjusted. NAFLD, characteristic of hepatic lipid accumulation, results from an imbalance between lipid synthesis, storage, oxidation, and/or secretion, and eventually triggers hepatitis hepatocirrhosis and even hepatoma [3]. Lipids such as triglyceride (TG) and cholesterol (TC) are stored in the form of lipid droplets (LDs) in hepatocytes. Lipids are synthesized in the endoplasmic reticulum (ER) together with the folding of membrane proteins and secretory proteins. An overload of unfolded or misfolded proteins may result in excessive fatty acids retention in the ER followed by the ER stress (ERS) which in turn aggravates the lipid accumulation. Long term lipid accumulation in the non-adipose cells i.e. hepatocytes, could exceed the capacity of the cells to manage lipids and cause further chronic ERS and lipotoxicity [4]. This article is protected by copyright. All rights reserved. www.mnf-journal.com Page 4 Molecular Nutrition & Food Research Mono-unsaturated fatty acids have the ability to attenuate acute ERS induced by palmitate, while excess fatty acid exposure over long periods of time can exceed the capacity, especially of non-adipose cells. For example, short-term treatment of cells with oleic acid increases very-low-density lipoproteins (VLDL) and triglyceride secretion, whereas prolonged incubation of cells with oleic acid can lead to ERS and of VLDL secretion [5]. When ERS occurs, the ER initiates the unfolded protein response (UPR) through the actions of canonical sensors IRE1, PERK, and ATF6 to restore ER homeostasis. The excessive accumulation of unfolded or misfolded proteins stimulates the ERS sensors to uncouple from GRP78 [6-7]. Among these sensors, IRE1 a ribonuclease that splices uXBP1 transcripts into the active sXBP1. Then sXBP1 is translocated into the nucleus to promote the transcription of lipogenic enzymes such as acetyl-CoA carboxylase 1 (ACC1) and stearoyl-CoA desaturase 1 (SCD1) [8]. In addition, PERK regulates fatty acid synthase (FAS) via sterol regulatory element binding protein-1c (SREBP1c) [9]. In the past few decades, plant-derived bioactives have been demonstrated to have the potential to prevent lipids-associated disorders. An epidemiological study involving 1938 healthy adults showed that intake of adequate phytochemicals was beneficial, lowering body weight and body fat [10]. Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, especially in broccoli, was reported to regulate a number of metabolic enzymes including phase I & phase II metabolic enzymes, and lipid metabolism-related enzymes/proteins [11]. Oral administration of the sulfur-radish extract and of sulforaphane after carbon tetrachloride (CCl4)-induced liver injury both decreased the serum level of alanine aminotransferase reduced the necrotic zones, inhibited lipid peroxidation, and induced phase 2 enzymes without affecting cytochrome P450-2E1 (CYP2E1). [12]. Moreover, long-term consumption of whole broccoli counters NAFLD development enhanced by a Western diet as well as hepatic tumorigenesis induced by DEN in B6C3F1 mice. [13] Therefore, we further hypothesized that SFN presents a preventive effect on the abnormal lipid metabolism via ERS mechanisms. In the present study, high-lipid induced abnormal lipid metabolism models were established both in vitro and in vivo to explore the protective effects of SFN and focusing on the ER-dependent/independent mechanisms. Material and Method This article is protected by copyright. All rights reserved. www.mnf-journal.com Page 5 Molecular Nutrition & Food Research 2.1 Reagent and Preparation Sulforaphane (1-isothiocyanato-4-(methylsulfinyl) butane, SFN, purity≥98%), purchased from LKT laboratories (St. Paul, MN), stock solution (100 mmol/L) was prepared in dimethyl sulfoxide (DMSO) and stored -20oC. 4-phenyl butyric acid (4-PBA) was purchased from Sigma-Aldrich (Saint Louis, USA). Antibodies against SREBP-1c, XBP1, lamin B were from Proteintech Biotechnologies (USA). Antibody against PERK was from Santa Cruz Biotechnology (USA). TRIZOL reagent kit, TransScript One-Step gDNA Removel and cDNA Synthesis SuperMix kit, TransStart Top Green qPCR SuperMix kit were purchased from TransGen Biotech (China). Kits for measuring triglycerides and cholesterol were purchased from Nanjing Jiancheng Biotechnologies (China). The animal chow was purchased from Keaoxieli Feed Co., Ltd (Beijing, China). Polyene Phosphatidylcholine (PPC) was purchased from Pharmacy (China) and dissolved in soya-bean oil. Oleic acid and palmitic acid were bought from Sigma-Aldrich (Saint Louis, USA). Palmitic acid was prepared as described previously [14]. Briefly, palmitate and oleate were dissolved in 0.1 mol/L NaOH at 70oC and filtered respectively to prepare 100 mmol/L palmitate stocks and 100 mmol/L oleate stocks. Five percent (w/v) FFA-free BSA (Sigma) solution was prepared in double-distilled H2O. 100 mmol/L FA and 5% BSA solution were mixed by 1:1 (v/v) in at 60℃ and filtered. 2.2 Cell Culture and Treatment Immortalized human hepatocytes (defined as HHL-5) were kindly supplied by Professor Arvind Petal, Medical Research Council (MRC) Virology Unit, UK. HHL-5 hepatocytes were cultured in DMEM/F12 (1:1) medium with 10% fetal bovine serum, at 37oC and 5% carbon dioxide. After reaching 70% confluence, cells were pre-treated with SFN once (1, 5, 10, 20 µmol/L) for 24 h, followed by 0.25 mmol/L FAs (oleic acid: palmitic acid, 2:1) for 5 days. 2.3 Establishment of NAFLD Animal Model and Treatments All the procedures were conducted in conformity with the guidelines of the Institutional Animal Care Use Committee, Heilongjiang
Recommended publications
  • Bioavailability of Sulforaphane from Two Broccoli Sprout Beverages: Results of a Short-Term, Cross-Over Clinical Trial in Qidong, China
    Cancer Prevention Research Article Research Bioavailability of Sulforaphane from Two Broccoli Sprout Beverages: Results of a Short-term, Cross-over Clinical Trial in Qidong, China Patricia A. Egner1, Jian Guo Chen2, Jin Bing Wang2, Yan Wu2, Yan Sun2, Jian Hua Lu2, Jian Zhu2, Yong Hui Zhang2, Yong Sheng Chen2, Marlin D. Friesen1, Lisa P. Jacobson3, Alvaro Muñoz3, Derek Ng3, Geng Sun Qian2, Yuan Rong Zhu2, Tao Yang Chen2, Nigel P. Botting4, Qingzhi Zhang4, Jed W. Fahey5, Paul Talalay5, John D Groopman1, and Thomas W. Kensler1,5,6 Abstract One of several challenges in design of clinical chemoprevention trials is the selection of the dose, formulation, and dose schedule of the intervention agent. Therefore, a cross-over clinical trial was undertaken to compare the bioavailability and tolerability of sulforaphane from two of broccoli sprout–derived beverages: one glucoraphanin-rich (GRR) and the other sulforaphane-rich (SFR). Sulfor- aphane was generated from glucoraphanin contained in GRR by gut microflora or formed by treatment of GRR with myrosinase from daikon (Raphanus sativus) sprouts to provide SFR. Fifty healthy, eligible participants were requested to refrain from crucifer consumption and randomized into two treatment arms. The study design was as follows: 5-day run-in period, 7-day administration of beverages, 5-day washout period, and 7-day administration of the opposite intervention. Isotope dilution mass spectrometry was used to measure levels of glucoraphanin, sulforaphane, and sulforaphane thiol conjugates in urine samples collected daily throughout the study. Bioavailability, as measured by urinary excretion of sulforaphane and its metabolites (in approximately 12-hour collections after dosing), was substantially greater with the SFR (mean ¼ 70%) than with GRR (mean ¼ 5%) beverages.
    [Show full text]
  • Synergistic Combinations of Curcumin, Sulforaphane, and Dihydrocaffeic
    International Journal of Molecular Sciences Article Synergistic Combinations of Curcumin, Sulforaphane, and Dihydrocaffeic Acid against Human Colon Cancer Cells Jesús Santana-Gálvez 1 , Javier Villela-Castrejón 1 , Sergio O. Serna-Saldívar 1, Luis Cisneros-Zevallos 2 and Daniel A. Jacobo-Velázquez 1,* 1 Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL C.P. 64849, Mexico; [email protected] (J.S.-G.); [email protected] (J.V.-C.); [email protected] (S.O.S.-S.) 2 Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA; [email protected] * Correspondence: [email protected]; Tel.: +52-33-3669-3000 Received: 12 April 2020; Accepted: 26 April 2020; Published: 28 April 2020 Abstract: Nutraceutical combinations that act synergistically could be a powerful solution against colon cancer, which is the second deadliest malignancy worldwide. In this study, curcumin (C), sulforaphane (S), and dihydrocaffeic acid (D, a chlorogenic acid metabolite) were evaluated, individually and in different combinations, over the viability of HT-29 and Caco-2 colon cancer cells, and compared against healthy fetal human colon (FHC) cells. The cytotoxic concentrations to kill 50%, 75%, and 90% of the cells (CC50, CC75, and CC90) were obtained, using the MTS assay. Synergistic, additive, and antagonistic effects were determined by using the combination index (CI) method. The 1:1 combination of S and D exerted synergistic effects against HT-29 at 90% cytotoxicity level (doses 90:90 µM), whereas CD(1:4) was synergistic at all cytotoxicity levels (9:36–34:136 µM) and CD(9:2) at 90% (108:24 µM) against Caco-2 cells.
    [Show full text]
  • D,L-Sulforaphane Causes Transcriptional Repression of Androgen Receptor in Human Prostate Cancer Cells
    Published OnlineFirst July 7, 2009; DOI: 10.1158/1535-7163.MCT-09-0104 Published Online First on July 7, 2009 as 10.1158/1535-7163.MCT-09-0104 1946 D,L-Sulforaphane causes transcriptional repression of androgen receptor in human prostate cancer cells Su-Hyeong Kim and Shivendra V. Singh al repression of AR and inhibition of its nuclear localiza- tion in human prostate cancer cells. [Mol Cancer Ther Department of Pharmacology and Chemical Biology, and 2009;8(7):1946–54] University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania Introduction Observational studies suggest that dietary intake of crucifer- Abstract ous vegetables may be inversely associated with the risk D,L-Sulforaphane (SFN), a synthetic analogue of crucifer- of different malignancies, including cancer of the prostate – ous vegetable derived L-isomer, inhibits the growth of (1–4). For example, Kolonel et al. (2) observed an inverse as- human prostate cancer cells in culture and in vivo and sociation between intake of yellow-orange and cruciferous retards cancer development in a transgenic mouse model vegetables and the risk of prostate cancer in a multicenter of prostate cancer. We now show that SFN treatment case-control study. The anticarcinogenic effect of cruciferous causes transcriptional repression of androgen receptor vegetables is ascribed to organic isothiocyanates (5, 6). Broc- (AR) in LNCaP and C4-2 human prostate cancer cells at coli is a rather rich source of the isothiocyanate compound pharmacologic concentrations. Exposure of LNCaP and (−)-1-isothiocyanato-(4R)-(methylsulfinyl)-butane (L-SFN). C4-2 cells to SFN resulted in a concentration-dependent L-SFN and its synthetic analogue D,L-sulforaphane (SFN) and time-dependent decrease in protein levels of total 210/213 have sparked a great deal of research interest because of their AR as well as Ser -phosphorylated AR.
    [Show full text]
  • Theranostics Sulforaphane-Induced Cell Cycle Arrest and Senescence
    Theranostics 2017, Vol. 7, Issue 14 3461 Ivyspring International Publisher Theranostics 2017; 7(14): 3461-3477. doi: 10.7150/thno.20657 Research Paper Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells Anna Lewinska1, Jagoda Adamczyk-Grochala1, Anna Deregowska2, 3, Maciej Wnuk2 1. Laboratory of Cell Biology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland; 2. Department of Genetics, University of Rzeszow, Kolbuszowa, Poland; 3. Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland. Corresponding author: Anna Lewinska, Laboratory of Cell Biology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland. Tel.: +48 17 872 37 11. Fax: +48 17 872 37 11. E-mail: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2017.04.19; Accepted: 2017.05.29; Published: 2017.08.15 Abstract Cancer cells are characterized by genetic and epigenetic alterations and phytochemicals, epigenetic modulators, are considered as promising candidates for epigenetic therapy of cancer. In the present study, we have investigated cancer cell fates upon stimulation of breast cancer cells (MCF-7, MDA-MB-231, SK-BR-3) with low doses of sulforaphane (SFN), an isothiocyanate. SFN (5-10 µM) promoted cell cycle arrest, elevation in the levels of p21 and p27 and cellular senescence, whereas at the concentration of 20 µM, apoptosis was induced.
    [Show full text]
  • Broccoli Or Sulforaphane: Is It the Source Or Dose That Matters?
    molecules Review Broccoli or Sulforaphane: Is It the Source or Dose That Matters? Yoko Yagishita 1, Jed W. Fahey 2,3,4, Albena T. Dinkova-Kostova 3,4,5 and Thomas W. Kensler 1,4,* 1 Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; [email protected] 2 Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; [email protected] 3 Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA 4 Cullman Chemoprotection Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA 5 Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland DD1 9SY, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-206-667-6005 Academic Editor: Gary D. Stoner Received: 24 September 2019; Accepted: 2 October 2019; Published: 6 October 2019 Abstract: There is robust epidemiological evidence for the beneficial effects of broccoli consumption on health, many of them clearly mediated by the isothiocyanate sulforaphane. Present in the plant as its precursor, glucoraphanin, sulforaphane is formed through the actions of myrosinase, a β-thioglucosidase present in either the plant tissue or the mammalian microbiome. Since first isolated from broccoli and demonstrated to have cancer chemoprotective properties in rats in the early 1990s, over 3000 publications have described its efficacy in rodent disease models, underlying mechanisms of action or, to date, over 50 clinical trials examining pharmacokinetics, pharmacodynamics and disease mitigation. This review evaluates the current state of knowledge regarding the relationships between formulation (e.g., plants, sprouts, beverages, supplements), bioavailability and efficacy, and the doses of glucoraphanin and/or sulforaphane that have been used in pre-clinical and clinical studies.
    [Show full text]
  • Phase II Trial of Effects of the Nutritional Supplement Sulforaphane on Doxorubicin-Associated Cardiac Dysfunction
    1.9.2019 Page 1 of 20 Phase II trial of effects of the Nutritional Supplement Sulforaphane on Doxorubicin-Associated Cardiac Dysfunction 1.9.2019 Page 2 of 20 Specific Aim Determine whether nutritional supplement sulforaphane (SFN) is safe to administer to breast cancer patients undergoing doxorubicin (DOX) chemotherapy. We have identified biomarkers for presymptomatic detection of DOX cardiotoxicity in breast cancer patients and reported that SFN alleviates DOX-induced cardiac toxicity while maintaining its anti-tumor activity in an animal model of breast cancer. SFN is in various stages of preclinical and clinical trials against different types of cancer but its safety and effects on identified markers have never been tested in patients treated with DOX. Sulforaphane is a generally recognized as a safe (GRAS) compound and this compound is currently in 61 different clinical trials including, Cystic Fibrosis, COPD, Melanoma, Breast and prostate cancer etc. (https://clinicaltrials.gov/ct2/results?term=sulforaphane&pg=1). Avmacol, (Nutramax Laboratories Consumer Care, Inc. Edgewood, MD 21040) an over-the-counter dietary supplement containing broccoli seed and sprout extracts that is rich with sulforaphane, will be used in this study. This is an FDA regulated trial using an investigational drug under IND 141682. Dose considerations were made on the basis of the ongoing clinical trial “Effects of Avmacol® in the Oral Mucosa of Patients Following Curative Treatment for Tobacco-related Head and Neck Cancer” (https://clinicaltrials.gov/ct2/show/NCT03268993). Furthermore, Avmacol has never been tested as an adjuvant to try and protect the heart from DOXs harmful effects. Therefore, we are proposing to do an early-clinical trial to assess SFN safety in DOX-treated patients and possibly prevent DOX-cardiotoxicity in breast cancer patients.
    [Show full text]
  • Novel Transformation Products from the Glucosinolate Breakdown
    1 Novel transformation products from the glucosinolate breakdown 2 products isothiocyanates and thioglucose formed during cooking 3 4 Holger Hoffmanna, Lars Andernacha, Clemens Kanzlerb, Franziska S. Hanschena* 5 a Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental 6 Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany 7 b Institute of Food Technology and Food Chemistry, Technical University of Berlin, 8 Gustav-Meyer-Allee 25, 13355 Berlin, Germany 9 10 *Corresponding author: 11 Franziska S. Hanschen 12 Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor- 13 Echtermeyer-Weg 1, 14979 Großbeeren, Germany 14 Tel: 0049-33701-78250 15 Fax: 0049-33701-55391 16 Email: [email protected] 17 1 18 Abstract 19 Glucosinolates are secondary plant metabolites occurring in Brassicaceae plants. 20 Upon tissue disruption these compounds can be enzymatically hydrolyzed into 21 isothiocyanates. The latter are very reactive and can react with nucleophiles during 22 food processing such as cooking. Here, a novel type of glucosinolate degradation 23 product was identified resulting from the reaction of the isothiocyanates sulforaphane 24 and allyl isothiocyanate with thioglucose during aqueous heat treatment. The cyclic 25 compounds were isolated and their structure elucidated by NMR spectroscopy and 26 high-resolution mass spectrometry as 4-hydroxy-3-(4- 27 (methylsulfinyl)butyl)thiazolidine-2-thione and 3-allyl-4-hydroxythiazolidine-2-thione. 28 Based on experiments with isotope-labeled reagents, the determination of the 29 diastereomeric ratio and further reactions, a reaction mechanism was proposed. 30 Finally, the formation of the two 3-alk(en)yl-4-hydroxythiazolidine-2-thiones was 31 quantified in boiled cabbage samples with contents of 92 pmol/g respectively 32 19 pmol/g fresh weight using standard addition method.
    [Show full text]
  • THE Glucosinolates & Cyanogenic Glycosides
    THE Glucosinolates & Cyanogenic Glycosides Assimilatory Sulphate Reduction - Animals depend on organo-sulphur - In contrast, plants and other organisms (e.g. fungi, bacteria) can assimilate it - Sulphate is assimilated from the environment, reduced inside the cell, and fixed to sulphur containing amino acids and other organic compounds Assimilatory Sulphate Reduction The Glucosinolates The Glucosinolates - Found in the Capparales order and are the main secondary metabolites in cruciferous crops The Glucosinolates - The glucosinolates are a class of organic compounds (water soluble anions) that contain sulfur, nitrogen and a group derived from glucose - Every glucosinolate contains a central carbon atom which is bond via a sulfur atom to the glycone group, and via a nitrogen atom to a sulfonated oxime group. In addition, the central carbon is bond to a side group; different glucosinolates have different side groups The Glucosinolates Central carbon atom The Glucosinolates - About 120 different glucosinolates are known to occur naturally in plants. - They are synthesized from certain amino acids: methionine, phenylalanine, tyrosine or tryptophan. - The plants contain the enzyme myrosinase which, in the presence of water, cleaves off the glucose group from a glucosinolate The Glucosinolates -Post myrosinase activity the remaining molecule then quickly converts to a thiocyanate, an isothiocyanate or a nitrile; these are the active substances that serve as defense for the plant - To prevent damage to the plant itself, the myrosinase and glucosinolates
    [Show full text]
  • GPEN-2014-Conference-Book.Pdf
    TABLE OF CONTENTS Greetings From The Committee ..........................................................................................................................1 The Host Universities ................................................................................................................................................2 The Local Organizing Committee ......................................................................................................................3 Acknowledgments .........................................................................................................................................................4 Sponsors ............................................................................................................................................................................5 Keynote ..............................................................................................................................................................................8 Program ..............................................................................................................................................................................9 Program Podium ........................................................................................................................................................ 12 Program Short Courses......................................................................................................................................... 15 Program Posters
    [Show full text]
  • Curcumin in Combination: Review of Synergistic Effects and Mechanisms in the Treatment of Inflammation
    Journal of Applied Pharmaceutical Science Vol. 11(02), pp 001-011, February, 2021 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2021.110201 ISSN 2231-3354 Curcumin in combination: Review of synergistic effects and mechanisms in the treatment of inflammation Putu Yudhistira Budhi Setiawan1,2*, Nyoman Kertia3, Arief Nurrochmad4, Subagus Wahyuono5 1Doctoral Program of the Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia. 2Department of Clinical Pharmacy, Faculty of Heatlh Sciences, Universitas Bali Internasional, Denpasar, 80239, Indonesia. 3Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia. 4Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia. 5Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia. ARTICLE INFO ABSTRACT Received on: 03/11/2020 Inflammation has an important role in the pathology of various diseases, so it has become a therapeutic target for the Accepted on: 03/01/2021 development of new pharmacological treatments. Treatment of inflammation using non-steroidal anti-inflammatory Available online: 05/02/2021 drugs and steroids class of drugs is known to incur some side effects. Therefore, prevention of inflammation is key to preventing the severity level of the disease. One approach to bridge this problem is by synergistically combining two or more drugs to prevent inflammation. The anti-inflammatory effect of curcumin, a bioactive component especially Key words: in the Zingiberaceae family, which delivers a variety of health benefits, has been extensively researched in the last Curcumin, combination, few decades. Curcumin combination has been reported to increase the anti-inflammatory activities.
    [Show full text]
  • Synergistic Induction of Nrf-2 Gene by Curcumin And
    SYNERGISTIC INDUCTION OF NRF-2 GENE BY CURCUMIN AND SULFORAPHANE AND PHARMACOKINETICS/METABOLISM OF I3C/DIM IN RATS BY UPLC/MS by Yury Y. Gomez A Thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Pharmaceutical Science written under the direction of Professor Ah-AN Kong, Ph.D and approved by _________________________ ______________________________ ______________________________ New Brunswick, New Jersey January, 2011 ABSTRACT OF THE THESIS PHARMACOKINETICS AND PHARMACODYNAMICS OF DIETARY CANCER CHEMOPREVENTIVE PHYTOCHEMICALS By Yury Y. Gomez Thesis Director: Ah-AN Kong Curcumin (CUR) and Sulforaphane (SFN) have shown remarkable cancer chemopreventive effects in numerous studies and combinations of low doses of chemopreventive agents can reduce toxicity while augmenting efficacy. The first part of the thesis investigated the chemotherapeutic effects elicited by a combination of CUR and SFN on human hepatocarcinoma cells. The combination treatment- mediated effects on phase II/antioxidant enzymatic induction and antioxidant response element (ARE) was investigated. It was proposed that the combination of CUR and SFN could synergistically enhance the induction of ARE and the nuclear E2-factor related factor 2 (Nrf2)-mediated enzymes. Low doses of CUR and SFN significantly induced the expression of Nrf2-mediated enzymes, HO-1 and UGT1A1, promoted nuclear translocation of Nrf2– a key regulator of phase II detoxifying /antioxidant enzymes – and synergistically induced the ARE luciferase activity. Chemical inhibitors of mRNA and protein synthesis affected the combination therapy- mediated transcriptional regulation of both HO-1 and UGT1A1. Synergism of CUR and SFN was evident at low concentrations.
    [Show full text]
  • Sulforaphane Exhibits in Vitro and in Vivo Antiviral Activity Against Pandemic SARS-Cov-2 and Seasonal Hcov-OC43 Coronaviruses
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.437060; this version posted March 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Sulforaphane exhibits in vitro and in vivo antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses Alvaro A. Ordonez1,2*, C. Korin Bullen2,3, Andres F. Villabona-Rueda4, Elizabeth A. Thompson5,6, Mitchell L. Turner1,2, Stephanie L. Davis2,3, Oliver Komm2,3, Jonathan D. Powell5,6, Franco R. D’Alessio4, Robert H. Yolken7, Sanjay K. Jain1,2, Lorraine Jones-Brando7* 1 Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA 2 Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA 3 Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA 4 Division of Pulmonology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA 5 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 6 Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 7 Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA *Co-corresponding authors: [email protected] (AAO) and [email protected] (LJ-B) bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.437060; this version posted March 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]