The Neural Crest/Domestication Syndrome Hypothesis, Explained: Reply to Johnsson, Henriksen, and Wright

Total Page:16

File Type:pdf, Size:1020Kb

The Neural Crest/Domestication Syndrome Hypothesis, Explained: Reply to Johnsson, Henriksen, and Wright 2 GENETICS, 2021, 219(1), iyab098 DOI: 10.1093/genetics/iyab098 Advance Access Publication Date: 19 July 2021 Letter The neural crest/domestication syndrome hypothesis, explained: reply to Johnsson, Henriksen, and Wright Adam S. Wilkins,1,* Richard Wrangham,2 and W. Tecumseh Fitch3 Downloaded from https://academic.oup.com/genetics/article/219/1/iyab098/6323656 by guest on 27 September 2021 1Institute of Theoretical Biology, Humboldt Universita¨ t zu Berlin, 10115 Berlin, Germany 2Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA and 3Department of Behavioral and Cognitive Biology, University of Vienna, 1090 Vienna, Austria *Corresponding author: Email: [email protected] Introduction first, which eventually became genetically fixed, though early genetic changes might also have contributed. The second phase, Our 2014 hypothesis, published in GENETICS, aimed to elucidate a much longer “breed formation” stage, involved centuries to mil- a set of traits associated with mammalian domestication, a lennia of coexistence with humans, often accompanied by selec- phenomenon termed the “domestication syndrome.” Our expla- tion for various productivity properties (or later, in some species, nation focused on a special group of cells found in embryos, the various ornamental properties) plus, undoubtedly, some degree neural crest cells (NCCs) and we proposed that genetic changes of natural selection in captivity. During this second stage, large affecting their development were at the root of vertebrate domes- numbers of genetic change would have taken place, overlaying tication. We now term this idea the “neural crest/domestication the initial genetic changes. These two stages probably involved syndrome” (NCDS) hypothesis. In this issue of GENETICS, different sets of genetic change (Zeder 2015; Pendleton et al. 2018; Johnsson et al. criticize our idea, arguing that it lacked a serious Fitak et al. 2020), although the second often included further genetic foundation and claiming that, despite many citations, it changes modifying behaviors, including increased docility. has received little actual support from new findings. Indeed, what we are calling the “breed formation” stage would In this reply to their critique, we do three things. First, we note have involved multiple sub-stages for many domesticated some key facts about animal domestication that need to be rec- species. ognized in any hypothesis about its genetics. Second, we explain Our proposal concerns the early events when domestication the actual reasoning that led us to propose the NCDS hypothesis. was first established. In our hypothesis, this early stage was (Johnsson et al. give an account of its genesis rather distant to our shared by all domesticated mammals and birds while later breed thinking.) Third, we briefly discuss some of the findings, not men- formation was often highly divergent between domesticated tioned by them, that strongly support our idea and discuss how species, as when selecting for productivity traits such as wool this hypothesis can be further tested. Finally, we mention points production in sheep or high egg laying in chickens, or further di- of agreement with Johnsson et al. but also note a few incorrect versity amongst breeds of the same species, for instance for beef citations in their article. vs milk production in different cattle breeds. This distinction be- Though we disagree with their main conclusions, we were tween stages in domestication was implicit in our 2014 paper, glad to see their article. It is a serious discussion of our idea. We when we mentioned “initial selection” for increased docility, but point out here, however, that our proposal has already passed should have been stated explicitly. The basic idea, however, that one test of a worthwhile hypothesis—inspiring good research— the first events in domestication were different in character from and that it meets another, which is the ability to be falsified, as the breed-formation phase is widely recognized; for a recent we will discuss. example, see Simi c et al. (2021). Animal domestication is a multi-stage process Defining the term “domestication All traditional domesticated animals (such as dogs, cattle, sheep, syndrome” goats, pigs, camels, horses, and chickens) began the process of The term “domestication syndrome” has been applied for about domestication a long time ago, frequently millennia in the past four decades to a set of correlated changes in “domesticated” (Francis 2015). Each of these species almost certainly experienced plants, namely crop plants. We use it to refer to a suite of two semi-distinct stages in their domestication (Zeder 2015; changes in mammals and birds—but which probably occurs in Pendleton et al. 2018). The first would have involved an initial vertebrates including fishes—that distinguish many different do- state of increased habituation to human presence, yielding both mesticated animals from their wild relatives. Johnsson et al. state reduced fear and reduced reactive aggression, hence increased that the expression “domestication syndrome” was first applied docility. This stage probably involved physiological changes at to animals by E.O. Price (Price 1984, 2002). We could find no use Received: March 12, 2021. Accepted: May 29, 2021 VC The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America. All rights reserved. For permissions, please email: [email protected] 2|GENETICS, 2021, Vol. 219, No. 1 of this term, however, in either of the cited sources. Instead, Price universal.” The same claim was made by Lord et al. (2019) but referred to the “domesticated phenotype.” without the qualifier “somewhat.” However, we never believed Yet “syndrome” and “phenotype” are not strictly synonymous nor stated that the domestication syndrome involved an identical and therefore not interchangeable. Taber’s Medical Dictionary set of altered traits. Table 1 of our 2014 paper listed which defines “syndrome” (from the Greek, “running together”) as “a specific traits were associated with particular domesticated group of symptoms and signs of disordered function related to mammalian species, the clear implication being that other spe- one another by means of some anatomic, physiologic, or bio- cies did not exhibit those traits. A careful enumeration of these chemical peculiarity.” Crucially, in common medical usage a pa- domestication-trait differences amongst mammals is given in tient can suffer from a syndrome without exhibiting all of the Sa´ nchez-Villagra et al. (2016) and the general point about such associated symptoms. Two examples illustrating this point are differences in different domesticates was further discussed in Down syndrome and Ehlers-Danlos syndrome (De Paepe and Wilkins (2017, 2019) as well as Zeder (2020); we return to it in a Malfait 2012; Bull 2020). “Syndrome” is thus a generic descriptive moment. Downloaded from https://academic.oup.com/genetics/article/219/1/iyab098/6323656 by guest on 27 September 2021 term, in which variability is an intrinsic aspect. In contrast, One last relevant point: to the best of our knowledge, the term “phenotype,” when designating a mutationally altered property, “domestication syndrome” as applied to animals was first used in generally refers to a smaller number of traits without great vari- an earlier paper by one of us (RWW) and two other colleagues ability, apart from degrees of expressivity. (Hare et al. 2012), then in our paper (Wilkins et al. 2014). A search In our usage, the “domestication syndrome” refers to a set of for its frequency of usage, using the search engine “Dimensions,” unexpected physical differences that frequently show up in dif- shows a distinct inflection upwards in 2014–2015, an upward ferent domesticated mammals. The phenomenon was first de- trend that continued through 2020 (data supplied on request). scribed, though not named, by Charles Darwin in his two-volume This suggests that our paper strongly stimulated interest in this study of domesticated animals and plants, Variation of Animals phenomenon. and Plants under Domestication (Darwin 1868). Darwin’s goal in his analysis of domesticated species was to derive the general mech- anism of heredity from what had been learned about breeding Tying the domestication syndrome to the domesticated species. Although his quest to understand the basis neural crest of heredity failed, his book launched the study of the hereditary The question that motivated our paper was: “why these traits in basis of domestication (Wilkins et al. 2014). particular?” Our starting point was realizing that many of the tis- The unexpected traits accompanying domestication in mam- sues involved in the traits of the domestication syndrome derive mals that Darwin particularly focused on were: changes in coat from the neural crest. These NCC-derived tissues include major color such as white and brown patches, smaller jaws (muzzles) parts of the jaws and teeth, pigmentation cells, components of and teeth, relatively smaller brains, floppy ears, curly tails, and the external ears, and cells involved in sympathetic responses altered female sexual cycles. The striking feature of these traits and the sexual cycle (Hall 2000; Trainor 2014)(Figure 1). The was that they had turned up independently in different domesti- domestication-related traits can all be interpreted as resulting cates. In contrast to the productivity traits that had been deliber- from partial reduction in the
Recommended publications
  • The Evolution of Animal Domestication
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266740619 The Evolution of Animal Domestication Article in Annual Review of Ecology Evolution and Systematics · October 2014 DOI: 10.1146/annurev-ecolsys-120213-091620 CITATIONS READS 179 3,162 2 authors: Greger Larson Dorian Q Fuller University of Oxford University College London 196 PUBLICATIONS 6,523 CITATIONS 322 PUBLICATIONS 12,021 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Dog Domestication View project Rwandan Archaeology View project All content following this page was uploaded by Dorian Q Fuller on 12 October 2014. The user has requested enhancement of the downloaded file. ES45CH06-Larson ARI 16 September 2014 11:18 V I E E W R S I E N C N A D V A The Evolution of Animal Domestication Greger Larson1 and Dorian Q. Fuller2 1Durham Evolution and Ancient DNA, Department of Archaeology, Durham University, Durham, DH1 3LE, United Kingdom; email: [email protected] 2Institute of Archaeology, University College London, London WC1H 0PY, United Kingdom Annu. Rev. Ecol. Evol. Syst. 2014. 66:115–36 Keywords The Annual Review of Ecology, Evolution, and archaeology, genetics, livestock, introgression, selection, agriculture Systematics is online at ecolsys.annualreviews.org This article’s doi: Abstract 10.1146/annurev-ecolsys-120213-091620 The domestication of plants and animals over the past 11,500 years has Copyright c 2014 by Annual Reviews. had a significant effect not just on the domesticated taxa but also on human All rights reserved evolution and on the biosphere as a whole.
    [Show full text]
  • Archaeological Central American Maize Genomes Suggest Ancient Gene Flow from South America
    Archaeological Central American maize genomes suggest ancient gene flow from South America Logan Kistlera,1, Heather B. Thakarb, Amber M. VanDerwarkerc, Alejandra Domicd,e, Anders Bergströmf, Richard J. Georgec, Thomas K. Harperd, Robin G. Allabyg, Kenneth Hirthd, and Douglas J. Kennettc,1 aDepartment of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560; bDepartment of Anthropology, Texas A&M University, College Station, TX 77843; cDepartment of Anthropology, University of California, Santa Barbara, CA 93106; dDepartment of Anthropology, The Pennsylvania State University, University Park, PA 16802; eDepartment of Geosciences, The Pennsylvania State University, University Park, PA 16802; fAncient Genomics Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom; and gSchool of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom Edited by David L. Lentz, University of Cincinnati, Cincinnati, OH, and accepted by Editorial Board Member Elsa M. Redmond November 3, 2020 (received for review July 24, 2020) Maize (Zea mays ssp. mays) domestication began in southwestern 16). However, precolonial backflow of divergent maize varieties Mexico ∼9,000 calendar years before present (cal. BP) and humans into Central and Mesoamerica during the last 9,000 y remains dispersed this important grain to South America by at least 7,000 understudied, and could have ramifications for the history of cal. BP as a partial domesticate. South America served as a second- maize as a staple in the region. ary improvement center where the domestication syndrome be- Morphological evidence from ancient maize found in ar- came fixed and new lineages emerged in parallel with similar chaeological sites combined with DNA data confirms a complex processes in Mesoamerica.
    [Show full text]
  • The History of Farm Foxes Undermines the Animal Domestication Syndrome, Trends in Ecology & Evolution (2019)
    Please cite this article in press as: Lord et al., The History of Farm Foxes Undermines the Animal Domestication Syndrome, Trends in Ecology & Evolution (2019), https://doi.org/10.1016/j.tree.2019.10.011 Trends in Ecology & Evolution Opinion The History of Farm Foxes Undermines the Animal Domestication Syndrome Kathryn A. Lord,1,2 Greger Larson,3,@ Raymond P. Coppinger,4,6 and Elinor K. Karlsson1,2,5,@,* The Russian Farm-Fox Experiment is the best known experimental study in animal domestication. Highlights By subjecting a population of foxes to selection for tameness alone, Dimitry Belyaev generated The ‘domestication syndrome’ has foxes that possessed a suite of characteristics that mimicked those found across domesticated been a central focus of research species. This ‘domestication syndrome’ has been a central focus of research into the biological into the biological processes un- pathways modified during domestication. Here, we chart the origins of Belyaev’s foxes in derlying domestication. The eastern Canada and critically assess the appearance of domestication syndrome traits across an- Russian Farm-Fox Experiment was imal domesticates. Our results suggest that both the conclusions of the Farm-Fox Experiment the first to test whether there is a and the ubiquity of domestication syndrome have been overstated. To understand the process causal relationship between selec- tion for tameness and the domes- of domestication requires a more comprehensive approach focused on essential adaptations to tication syndrome. human-modified environments. Historical records and genetic The Origins of Domestication Syndrome analysis show that the foxes used in The domestication syndrome describes a suite of behavioral and morphological characteristics the Farm-Fox Experiment origi- consistently observed in domesticated populations.
    [Show full text]
  • Hered 445 Master..Hered 445 .. Page648
    Heredity 81 (1998) 648–658 Received 19 March 1998, accepted 15 June 1998 Genetic analysis of the domestication syndrome in pearl millet (Pennisetum glaucum L., Poaceae): inheritance of the major characters V. PONCET*%, F. LAMY%, J. ENJALBERT^, H. JOLY§, A. SARR% & T. ROBERT% %Laboratoire d’Evolution et Syst´ematique, Universit´e Paris XI, Bˆat. 362, F-91405 Orsay Cedex, France, ^Station de G´en´etique V´eg´etale, Ferme du Moulon, F-91190 Gif sur Yvette, France and §CIRAD-Forˆet, campus international de Baillarguet, BP 5035, F-34032 Montpellier Cedex 1, France The inheritance of domestication traits distinguishing pearl millet (Pennisetum glaucum) from its wild relatives (P. mollissimum) was assessed in F2 progenies derived from a cross between a typical landrace of pearl millet and a wild ecotype. Despite a high level of recombination between the two genomes, the existence of preferential associations between some characters was demonstrated, leading, in particular, to cultivated-like phenotypes. Traits determining spikelet structure showed simple Mendelian inheritance. Moreover, the genes encoding these traits mapped in a linkage group where quantitative trait loci for spike size and tillering habit were found. This linkage group could correspond to one of the two chromosome segments that have already been shown to be involved in the variation for spikelet structure in progenies from several cultivatedÅwild crosses. A synthetic map of these two regions is given. The evolutionary significance of this genomic organization in relation to the domestication process is discussed, as well as its potential use for pearl millet genetic resources enhancement. Keywords: domestication, genetic map, pearl millet, Pennisetum glaucum.
    [Show full text]
  • Paleogenomics of Animal Domestication
    Paleogenomics of Animal Domestication Evan K. Irving-Pease, Hannah Ryan, Alexandra Jamieson, Evangelos A. Dimopoulos, Greger Larson, and Laurent A. F. Frantz Abstract Starting with dogs, over 15,000 years ago, the domestication of animals has been central in the development of modern societies. Because of its importance for a range of disciplines – including archaeology, biology and the humanities – domestication has been studied extensively. This chapter reviews how the field of paleogenomics has revolutionised, and will continue to revolutionise, our under- standing of animal domestication. We discuss how the recovery of ancient DNA from archaeological remains is allowing researchers to overcome inherent shortcom- ings arising from the analysis of modern DNA alone. In particular, we show how DNA, extracted from ancient substrates, has proven to be a crucial source of information to reconstruct the geographic and temporal origin of domestic species. We also discuss how ancient DNA is being used by geneticists and archaeologists to directly observe evolutionary changes linked to artificial and natural selection to generate a richer understanding of this fascinating process. Keywords Ancient DNA · Archaeology · Domestication · Entomology · Evolution · Genomics · Zoology E. K. Irving-Pease (*) · H. Ryan · A. Jamieson · E. A. Dimopoulos · G. Larson The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK e-mail: [email protected] L. A. F. Frantz (*) The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK School of Biological and Chemical Sciences, Queen Mary University of London, London, UK e-mail: [email protected] Charlotte Lindqvist and Om P.
    [Show full text]
  • Genetics and Animal Domestication: New Windows on an Elusive Process K
    Journal of Zoology. Print ISSN 0952-8369 Genetics and animal domestication: new windows on an elusive process K. Dobney1 & G. Larson2 1 Department of Archaeology, University of Durham, Durham, UK 2 Department of Zoology, Henry Wellcome Ancient Biomolecules Centre, University of Oxford, UK Keywords Abstract domestication; genetics; phylogeography; molecular clocks; paedomorphosis. Domesticated animals are universally familiar. How, when, where and why they became domesticated is less well understood. The genetic revolution of the past few Correspondence decades has facilitated novel insights into a field that previously was principally the Greger Larson, Department of Zoology, domain of archaeozoologists. Although some of the conclusions drawn from Henry Wellcome Ancient Biomolecules genetic data have proved to be contentious, many studies have significantly altered Centre, University of Oxford, South Parks or refined our understanding of past human animal relationships. This review Road OX1 3PS, UK seeks not only to discuss the wider concerns and ramifications of genetic Email: [email protected] approaches to the study of animal domestication but also to provide a broader theoretical framework for understanding the process itself. More specifically, we Received 6 July 2005; accepted 8 September discuss issues related to the terminology associated with domestication, the 2005 possibility of domestication genes, and the promise and problems of genetics to answer the fundamental questions associated with domestication. doi:10.1111/j.1469-7998.2006.00042.x Introduction Defining domestication Over the past 10 000 years, human history has been wholly Terminology typically used in domestication studies, including transformed by the domestication of plants and animals. the word ‘domestication’ itself, is often confusing and poorly Although the term ‘domestic animal’ has universal meaning, defined.
    [Show full text]
  • Awn Reduction and the Domestication of Asian Rice: a Syndrome Or Crop Improvement Trait? Serge Svizzero, Avik Ray, Debarati Chakraborty
    Awn Reduction and the Domestication of Asian Rice: A Syndrome or Crop Improvement Trait? Serge Svizzero, Avik Ray, Debarati Chakraborty To cite this version: Serge Svizzero, Avik Ray, Debarati Chakraborty. Awn Reduction and the Domestication of Asian Rice: A Syndrome or Crop Improvement Trait?. Economic Botany, Springer Verlag, 2019, pp.1-12. 10.1007/s12231-019-09465-0. hal-02275855 HAL Id: hal-02275855 https://hal.univ-reunion.fr/hal-02275855 Submitted on 2 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Awn Reduction and the Domestication of Asian Rice: A Syndrome or Crop Improvement Trait? Serge Svizzero1, Avik Ray2,*, Debarati Chakraborty2,3 1- Faculté de Droit et d’Economie, Université de La Réunion, 15 Avenue René Cassin. CS 92003, 97744 Saint Denis Cedex 9, France, Tel: +262 262 13 82 58; ORCID: 0000-0003- 3895-7273 2 - Center for studies in Ethnobiology, Biodiversity, and sustainability (CEiBa), B.G. Road, Mokdumpur, Malda – 732103, West Bengal, India; ORCID: 0000-0003-1662-7679 3 - Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, India; ORCID: 0000-0002-1939-9889 * [email protected] Running title: SVIZZERO, RAY AND CHAKRABORTY: RICE AWN REDUCTION Words account: 7596; Abstract: 180.
    [Show full text]
  • Rethinking Dog Domestication by Integrating Genetics, Archeology, and Biogeography
    Rethinking dog domestication by integrating genetics, archeology, and biogeography Greger Larsona,1, Elinor K. Karlssonb,c, Angela Perria, Matthew T. Webster d,SimonY.W.Hoe, Joris Petersf, Peter W. Stahl g, Philip J. Piperh,i, Frode Lingaasj, Merete Fredholmk, Kenine E. Comstockl, Jaime F. Modianom,n, Claude Schellingo, Alexander I. Agoulnikp, Peter A. Leegwaterq, Keith Dobneyr, Jean-Denis Vignes, Carles Vilàt, Leif Anderssond,u, and Kerstin Lindblad-Tohb,d aDurham Evolution and Ancient DNA, Department of Archaeology, University of Durham, Durham DH1 3LE, United Kingdom; bBroad Institute of MIT and Harvard, Cambridge MA 02142; cFaculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge MA 02138; dScience for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden; eSchool of Biological Sciences, University of Sydney, Sydney NSW 2006, Australia; fVeterinary Sciences Department, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilian University, 80539 Munich, Germany; gDepartment of Anthropology, University of Victoria, Victoria, BC, Canada V8W 2Y2; hSchool of Archaeology and Anthropology, Australian National University, Canberra, Australian Capital Territory 200, Australia; iArchaeological Studies Program, University of the Philippines, Diliman, 1101, Quezon City, Philippines; jDepartment of Basic Sciences and Aquatic Medicine, Division of Genetics, Norwegian School of Veterinary Science,
    [Show full text]
  • Detecting Sex and Selection in Ancient Cattle Remains Using
    !! ! " # $ %&'%(&)% $ * +(+%(''()%(& , - ,,, .(%)/)&% ! " # $% % %&%%' ' ' ( )* + ) , -)$% %) , , . / , ( ). ) 0!1)22 ) )3,40154 566!501$ 52) . %%%% + + + ). ++ ' )* 2$0 ' 7 + )" + + ' ' ). + 4 ' ' ' '+ / + ) * ' + '' ) 5 8 ' 9 . 3 '' : + $%%%%51%%%% + + ).9 ,( + + '8 ' ' ) * + 7 )3 ,( + + + ' )* ' + +' ' 4 ) .,( 8 ! !" ! # !$ %&'( ! !)*+,-. ! ;-, $% % 3,, 26 52$ ! 3,40154 566!501$ 52 & &&& 5 $<$2 = &>> )7)> ? @ & &&& 5 $<$2 A Till mamma Art work on front page by Lotta Tomasson List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Svensson, E.M., Axelsson, E., Vretemark, M., Makowiecki, D., Gilbert, M.T.P., Willerslev, E., Götherström, A. Insights into Y chromosomal genetic variation and effective population size in the extinct European aurochs Bos primigenius. Manuscript II Svensson, E., Götherström, A., (2008) Temporal fluctuations of Y-chromosomal variation in Bos taurus. Biology Letters, 4(6):752-754 III Svensson, E.M., Götherström, A., Vretemark, M. (2008) A DNA test for sex identification in cattle confirms osteometric results. Journal of Archaeological Science 35(4):942-946 IV Telldahl, Y., Svensson, E.M., Götherström, A., Storå, J.
    [Show full text]
  • Animal Domestication in the Era of Ancient Genomics Laurent Frantz, Daniel Bradley, Greger Larson, Ludovic Orlando
    Animal domestication in the era of ancient genomics Laurent Frantz, Daniel Bradley, Greger Larson, Ludovic Orlando To cite this version: Laurent Frantz, Daniel Bradley, Greger Larson, Ludovic Orlando. Animal domestication in the era of ancient genomics. Nature Reviews Genetics, Nature Publishing Group, 2020, 21 (8), pp.449-460. 10.1038/s41576-020-0225-0. hal-03030302 HAL Id: hal-03030302 https://hal.archives-ouvertes.fr/hal-03030302 Submitted on 30 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Animal domestication in the era of ancient genomics Laurent A. F. Frantz1†, Daniel G. Bradley2, Greger Larson3 and Ludovic Orlando4,5† 1 School of Biological and Chemical Sciences, Queen Mary University of London, London, UK. 2 Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland 3 The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK. 4 Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse,
    [Show full text]
  • 1 the Limits of Selection Under Plant Domestication Robin G Allaby1
    The limits of selection under plant domestication Robin G Allaby1* ,Dorian Q Fuller2, James L Kitchen1, 3 1. School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL 2. Institute of Archaeology, University College London, 31-34 Gordon Square, London WC1H 0PY 3. Computational and Systems Biology, Rothamsted, Harpenden, Herts. * corresponding author email: [email protected] 1 Abstract Plant domestication involved a process of selection through human agency of a series of traits collectively termed the domestication syndrome. Current debate concerns the pace at which domesticated plants emerged from cultivated wild populations and how many genes were involved. Here we present simulations that test how many genes could have been involved by considering the cost of selection. We demonstrate the selection load that can be endured by populations increases with decreasing selection coefficients and greater numbers of loci down to values of about s = 0.005, causing a driving force that increases the number of loci under selection. As the number of loci under selection increases, an effect of co-selection increases resulting in individual unlinked loci being fixed more rapidly in out-crossing populations, representing a second driving force to increase the number of loci under selection. In inbreeding systems co-selection results in interference and reduced rates of fixation but does not reduce the size of the selection load that can be endured. These driving forces result in an optimum pace of genome evolution in which 50-100 loci are the most that could be under selection in a cultivation regime. Furthermore, the simulations do not preclude the existence of selective sweeps but demonstrate that they come at a cost of the selection load that can be endured and consequently a reduction of the capacity of plants to adapt to new environments, which may contribute to the explanation of why selective sweeps have been so rarely detected in genome studies.
    [Show full text]
  • Comparative Genomic Evidence for Self-Domestication in Homo Sapiens
    bioRxiv preprint doi: https://doi.org/10.1101/125799; this version posted April 9, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Comparative genomic evidence for self-domestication in Homo sapiens Constantina Theofanopoulou1,2,a, Simone Gastaldon1,a, Thomas O’Rourke1, Bridget D. Samuels3, Angela Messner1, Pedro Tiago Martins1, Francesco Delogu4, Saleh Alamri1, and Cedric Boeckx1,2,5,b 1Section of General Linguistics, Universitat de Barcelona 2Universitat de Barcelona Institute for Complex Systems 3Center for Craniofacial Molecular Biology, University of Southern California 4Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU) 5ICREA aThese authors contributed equally to this work bCorresponding author: [email protected] ABSTRACT This study identifies and analyzes statistically significant overlaps between selective sweep screens in anatomically modern humans and several domesticated species. The results obtained suggest that (paleo-)genomic data can be exploited to complement the fossil record and support the idea of self-domestication in Homo sapiens, a process that likely intensified as our species populated its niche. Our analysis lends support to attempts to capture the “domestication syndrome” in terms of alterations to certain signaling pathways and cell lineages, such as the neural crest. Introduction Recent advances in genomics, coupled with other sources of information, offer new opportunities to test long-standing hypotheses about human evolution. Especially in the domain of cognition, the retrieval of ancient DNA could, with the help of well-articulated linking hypotheses connecting genes, brain and cognition, shed light on the emergence of ‘cognitive modernity’.
    [Show full text]