Proceedings of the FREENIX Track: 2002 USENIX Annual Technical Conference

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the FREENIX Track: 2002 USENIX Annual Technical Conference USENIX Association Proceedings of the FREENIX Track: 2002 USENIX Annual Technical Conference Monterey, California, USA June 10-15, 2002 THE ADVANCED COMPUTING SYSTEMS ASSOCIATION © 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. The Future is Coming: Where the X Window System Should Go Jim Gettys Cambridge Research Laboratory, Compaq Computer Corporation. [email protected] Abstract tectures. Changes to the X infrastructure in recent work make this retrofit appear feasible, enabling a much more dynamic view of applications. And applications must be able to adapt between very different resolution displays The X Window System was developed as a desktop win- (more than an order of magnitude) and differing pointing dow system, in a large scale (for its time) campus scale devices. network environment. In the last few years, it has es- caped the desktop and appeared in laptop, handheld and In this paper, I cover the changes and infrastructure re- other mobile network devices. X from its inception has quired to realize this vision, and hope to demonstrate been a network transparent window system, and should a compelling part of this vision in action. This vision, thrive in this environment. Mobility forces a set of issues I believe, provides a much more compelling vision of to surface that were only partially forseen in X’s design. what it means for applications to work in your network, For one reason or other, the hopes for the design were and with the advent of high speed metropolitan and wide not entirely realized. area networks, and PDA’swith high speed wireless net- works, will provide a key element of the coming perva- Our original view of X’s use included highly mobile sive computing system. individuals (students moving between classes), and a hope, never generally realized for X was the migration of applications between X servers. Toolkit implementers typically did not understand and share this poorly enun- ciated vision and were primarily driven by pressing im- 1 Introduction mediate needs, and X’s design made migration or repli- cation difficult to implement as an after thought. As a result, migration (and replication) was seldom imple- mented, and early toolkits such as Xt made it very dif- The X Window System [SG92] architecture lay fallow ficult. Ironically, Emacs is about the only widespread for at least five years, roughly the period from 1995- application capable of both migration and replication, 2000, though many of the extensions defined after the which avoided using any toolkit. base X11 architecture were questionable at best [Get00]. The good news is that the original X architecture en- You should be able to travel between work and home abled the development of desktop systems such as or between systems running X at work, and retrieve Gnome [dI99] and KDE [Dal99]. But to again match your running applications (with suitable authentication and then exceed other systems such as Microsoft Win- and authorization). You should be able to log out, and dows and Apple’s Aqua [App] in all areas, serious fur- “park” your applications somewhere until you retrieve ther work is necessary. This paper attempts to outline them later, either on the same display, or somewhere areas where base window system work is required to else. You should be able to migrate your application’s again make X competitive with other current commer- display from a handheld to a wall projector (for example, cial systems, but specifically toward use in the current your presentation), and back again. Applications should large scale network environment. be able to easily survive the loss of the X server (most commonly the loss of the underlying TCP connection, I believe that migration and replication of running X ap- when running remotely). plications is key to the near term future environment. A number of issues made replication and/or migration dif- There are challenges not fully forseen: applications must ficult. These include (and some of which are discussed be able to adapt between highly variable display archi- in detail in [GP01]): Fonts have been server side objects, and there is transparency, presents the problems of large scale dis- no guarantee the fonts available on one server are tributed systems. It is infeasible to update all X servers available on the other (slightly mitigated by the ex- to support new font technology. istance of font servers. The X extension mechanism is at best only a partial so- Graphics operations in X can be made to drawables lution, since if an application relies on an extension’s (windows or to off screen memory, “pixmaps”). existance, it cannot be deployed until the X server has The X protocol only guaranties 1 bit deep draw- been upgraded. Many older systems can never be up- ables. Displays of different depths might share no dated with new X extensions. Application developers other depth. Futhermore, early toolkits typically won’t use a new feature if it badly restricts the market did not handle image rendering at all, exposing this for their software. disparity of displays completely to applications. Applications that will work (even if somewhat slowly) Resource ID’s (for windows, pixmaps, fonts, etc) always trump applications that won’t run at all, from the and Atoms are per server identifiers, and have to be point of view of an ISV (who wants to sell product), or remapped. These were typically exposed directly to an open source developer who wants their application applications, though sometimes with some abstrac- widespread. tion (for example, partially hidden in a widget data structure). Pseudocolor displays again presented toolkits, ap- 2.2 Historical Observation about Opaque plications, or pseudoservers major headaches: there Server side fonts would be no guarantee the color resources would be available when needed. It took longer for pseu- docolor to become unimportant than expected due From the beginning, X’s minimalist font abstraction has to the not fully understood economics that drove presented challenges to applications interested in serious displays down market at the same functionality. typography. Due to X’s inadaquacies, serious applica- Thankfully, monochrome (1 bit) and pseudocolor tions from the very beginning of X’s history have had to displays are now a thing of the past, for all intents work around X’s fonts, and that coordinating X’s fonts and purposes. with those required for printing has been a 15 year long migrane headache. Authentication and authorization XXX FILL IN XXX. Applications need sufficient information for either X’s use, or for printing use (something we ignored in the de- sign of the X protocol). So to be useful to applications on systems, any access to fonts must be able to access 2 Client Side Fonts *any* information in the font files, since they will con- tinue to evolve. While server side fonts clearly provide major headaches There have already been four generations of font formats for migration and replication (since there is no guarantee over X’s history: that the fonts the application needs are available on the X servers being used), client side fonts are needed on Bitmap 1983-1990 general architectural grounds. This section lays out why. Speedo 1991 2.1 Large Scale Distributed Systems Deploy- Type1 1992 ment TrueType 1997 In large scale commercial systems, applications are often OpenType, in the short term future represents a fifth for- run remotely from the X server to a desktop system or mat. Approximately every 5 years, there is likely to X terminal, and therefore applications won’t be deploy- be a new generation/format for font files, with increas- able until both ends of the communcations have been ing quality (along some dimension, whether it be typo- updated. The X Window System, due to its network graphic, or character set, . ). Any server side font so- lution, therefore, will always be difficult to deploy and fewer server round trips chasing a moving target. incremental behavior: no long startup delays for As each new font technology has deployed, applications font rendering have always needed to access the new data contained in the font files for the new information. X itself has not faster startup time evolved to do more than rendering the bits on the screen, applications can directly access font files to enable and has made it difficult or impossible for applications printing to share this information. future font formats can be added without Over this period, fonts themselves have become much client/server deployment interdependencies. larger. When X was designed, fonts typically had fewer than 128 glyphs (ascii), and the number of fonts were an application is guaranteed that the fonts it needs small, and since the fonts were bitmap fonts, the metrics will be usable on any X server in the network, eas- were static. The number of round trips to retrieve font ing migration and replication of applications. metrics were small, and the size of the metrics them- selves were small. This situation contrasts greatly with the present. 2.3 Remaining work Many modern fonts have thousands of glyphs and hav- ing hundreds or thousands of fonts on a system is now Some data from modern applications show these ben- is entirely commonplace. Searching among these fonts efits [Pac00a] at current screen resolutions (typically for coverage of correct style and code point coverage re- 100DPI); more data on a wider selection of applications quires applications to retrieve (typically at startup) very is needed to confirm this early data.
Recommended publications
  • R&S®BBA100 Broadband Amplifier Open
    R&S®BBA100 Broadband Amplifier Open Source Acknowledgment 5353.8300.00 – 01 /RL/1/EN 01.00 / Broadcasting 3575.4620.02 M: - T - PAD Open Source Acknowledgment R&S BBA100 Introduction Contents 1 Introduction ......................................................................................... 3 1.1 Disclaimer ..................................................................................................................... 3 1.2 How to obtain the source code .................................................................................. 3 2 Software packages ............................................................................. 4 3 Verbatim license texts ........................................................................ 7 3.1 Apache License 2.0 ..................................................................................................... 7 3.2 GNU Library General Public License, Version 2.0 (LGPL 2.0) ..............................10 3.3 Boost Software License ............................................................................................18 3.4 GNU General Public License, Version 2.0 (GPL 2.0) ..............................................18 3.5 GNU Lesser General Public License, Version 2.1 (LGPL 2.1) ...............................24 3.6 Mozilla Public License, Version 1.1 (MPL 1.1) ........................................................32 3.7 MIT ...............................................................................................................................40 3.8 JDOM License
    [Show full text]
  • Release Notes for X11R6.8.2 the X.Orgfoundation the Xfree86 Project, Inc
    Release Notes for X11R6.8.2 The X.OrgFoundation The XFree86 Project, Inc. 9February 2005 Abstract These release notes contains information about features and their status in the X.Org Foundation X11R6.8.2 release. It is based on the XFree86 4.4RC2 RELNOTES docu- ment published by The XFree86™ Project, Inc. Thereare significant updates and dif- ferences in the X.Orgrelease as noted below. 1. Introduction to the X11R6.8.2 Release The release numbering is based on the original MIT X numbering system. X11refers to the ver- sion of the network protocol that the X Window system is based on: Version 11was first released in 1988 and has been stable for 15 years, with only upwardcompatible additions to the coreX protocol, a recordofstability envied in computing. Formal releases of X started with X version 9 from MIT;the first commercial X products werebased on X version 10. The MIT X Consortium and its successors, the X Consortium, the Open Group X Project Team, and the X.OrgGroup released versions X11R3 through X11R6.6, beforethe founding of the X.OrgFoundation. Therewill be futuremaintenance releases in the X11R6.8.x series. However,efforts arewell underway to split the X distribution into its modular components to allow for easier maintenance and independent updates. We expect a transitional period while both X11R6.8 releases arebeing fielded and the modular release completed and deployed while both will be available as different consumers of X technology have different constraints on deployment. Wehave not yet decided how the modular X releases will be numbered. We encourage you to submit bug fixes and enhancements to bugzilla.freedesktop.orgusing the xorgproduct, and discussions on this server take place on <[email protected]>.
    [Show full text]
  • THINC: a Virtual and Remote Display Architecture for Desktop Computing and Mobile Devices
    THINC: A Virtual and Remote Display Architecture for Desktop Computing and Mobile Devices Ricardo A. Baratto Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2011 c 2011 Ricardo A. Baratto This work may be used in accordance with Creative Commons, Attribution-NonCommercial-NoDerivs License. For more information about that license, see http://creativecommons.org/licenses/by-nc-nd/3.0/. For other uses, please contact the author. ABSTRACT THINC: A Virtual and Remote Display Architecture for Desktop Computing and Mobile Devices Ricardo A. Baratto THINC is a new virtual and remote display architecture for desktop computing. It has been designed to address the limitations and performance shortcomings of existing remote display technology, and to provide a building block around which novel desktop architectures can be built. THINC is architected around the notion of a virtual display device driver, a software-only component that behaves like a traditional device driver, but instead of managing specific hardware, enables desktop input and output to be intercepted, manipulated, and redirected at will. On top of this architecture, THINC introduces a simple, low-level, device-independent representation of display changes, and a number of novel optimizations and techniques to perform efficient interception and redirection of display output. This dissertation presents the design and implementation of THINC. It also intro- duces a number of novel systems which build upon THINC's architecture to provide new and improved desktop computing services. The contributions of this dissertation are as follows: • A high performance remote display system for LAN and WAN environments.
    [Show full text]
  • Security at Extreme Scales
    SECURITY AT EXTREME SCALES Recommended Citation Eric Grosse, "SECURITY AT EXTREME SCALES", NAPSNet Special Reports, May 30, 2019, https://nautilus.org/napsnet/napsnet-special-reports/security-at-extreme-scales/ ERIC GROSSE MAY 30, 2019 I. INTRODUCTION 1 In this paper, Eric Grosse argues: “Much of the security progress over the past decade has been at large-scale, finding and patching vulnerabilities in widely used applications or defending networks of millions of machines containing high-value data. The lessons there may help military systems, but for the very highest security needs such as NC3, we ought to return to basics and harden small-scale systems. And we ought to do it as a joint effort, even between adversaries.” Eric Grosse was Google's VP Security & Privacy Engineering. Before Google, Eric was a Research Director and Fellow at Bell Labs. He has a Ph.D. in Computer Science from Stanford. Acknowledgments: The workshop was funded by the John D. and Catherine T. MacArthur Foundation. This report is published simultaneously here by Technology for Global Security and here by Nautilus Institute and is published under a 4.0 International Creative Commons License the terms of which are found here. The views expressed in this report do not necessarily reflect the official policy or position of the Nautilus Institute. Readers should note that Nautilus seeks a diversity of views and opinions on significant topics in order to identify common ground. A podcast with Eric Grosse, Peter Hayes, and Philip Reiner on NC3 and security at extreme scales is found here. The views expressed in this report do not necessarily reflect the official policy or position of the Nautilus Institute.
    [Show full text]
  • X Window System Network Performance
    X Window System Network Performance Keith Packard Cambridge Research Laboratory, HP Labs, HP [email protected] James Gettys Cambridge Research Laboratory, HP Labs, HP [email protected] Abstract havior (or on a local machine, context switches between the application and the X server). Performance was an important issue in the develop- One of the authors used the network visualization tool ment of X from the initial protocol design and contin- when analyzing the design of HTTP/1.1 [NGBS 97]. ues to be important in modern application and extension The methodology and tools used in that analysis in- development. That X is network transparent allows us volved passive packet level monitoring of traffic which to analyze the behavior of X from a perspective seldom allowed precise real-world measurements and compar- possible in most systems. We passively monitor network isons. The work described in this paper combines this packet flow to measure X application and server perfor- passive packet capture methodology with additional X mance. The network simulation environment, the data protocol specific analysis and visualization. Our experi- capture tool and data analysis tools will be presented. ence with this combination of the general technique with Data from this analysis are used to show the performance X specific additions was very positive and we believe impact of the Render extension, the limitations of the provides a powerful tool that could be used in the analy- LBX extension and help identify specific application and sis of other widely used protocols. toolkit performance problems. We believe this analysis With measurement tools in hand, we set about char- technique can be usefully applied to other network pro- acterizing the performance of a significant selection of tocols.
    [Show full text]
  • Xlib − C Language X Interface Xwindowsystem Standard Xversion 11, Release 7 Libx11 1.3.2
    Xlib − C Language X Interface XWindowSystem Standard XVersion 11, Release 7 libX11 1.3.2 James Gettys Cambridge Research Laboratory Digital Equipment Corporation Robert W.Scheifler Laboratory for Computer Science Massachusetts Institute of Technology with contributions from Chuck Adams, Tektronix, Inc. Vania Joloboff, Open Software Foundation Hideki Hiura, Sun Microsystems, Inc. Bill McMahon, Hewlett-Packard Company Ron Newman, Massachusetts Institute of Technology Al Tabayoyon, Tektronix, Inc. Glenn Widener,Tektronix, Inc. Shigeru Yamada, Fujitsu OSSI The X WindowSystem is a trademark of The Open Group. TekHVC is a trademark of Tektronix, Inc. Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1994, 1996, 2002 The Open Group Permission is hereby granted, free of charge, to anyperson obtaining a copyofthis software and associated documenta- tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft- ware. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOTLIMITED TOTHE WARRANTIES OF MERCHANTABILITY,FITNESS FOR A PARTIC- ULAR PURPOSE AND NONINFRINGEMENT.INNOEVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,WHETHER IN AN ACTION OF CONTRACT,TORTOROTH- ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    [Show full text]
  • Release Notes for X11R7.5 the X.Org Foundation 1
    Release Notes for X11R7.5 The X.Org Foundation 1 October 2009 These release notes contains information about features and their status in the X.Org Foundation X11R7.5 release. Table of Contents Introduction to the X11R7.5 Release.................................................................................3 Summary of new features in X11R7.5...............................................................................3 Overview of X11R7.5............................................................................................................4 Details of X11R7.5 components..........................................................................................5 Build changes and issues..................................................................................................10 Miscellaneous......................................................................................................................11 Deprecated components and removal plans.................................................................12 Attributions/Acknowledgements/Credits......................................................................13 Introduction to the X11R7.5 Release This release is the sixth modular release of the X Window System. The next full release will be X11R7.6 and is expected in 2010. Unlike X11R1 through X11R6.9, X11R7.x releases are not built from one monolithic source tree, but many individual modules. These modules are distributed as individ- ual source code releases, and each one is released when it is ready, instead
    [Show full text]
  • Proceedings of the FREENIX Track: 2002 USENIX Annual Technical Conference
    USENIX Association Proceedings of the FREENIX Track: 2002 USENIX Annual Technical Conference Monterey, California, USA June 10-15, 2002 THE ADVANCED COMPUTING SYSTEMS ASSOCIATION © 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. XCL : An Xlib Compatibility Layer For XCB Jamey Sharp Bart Massey Computer Science Department Portland State University Portland, Oregon USA 97207–0751 fjamey,[email protected] Abstract 1 The X Window System The X Window System [SG86] is the de facto standard technology for UNIX applications wishing to provide a graphical user interface. The power and success of the X model is due in no small measure to its separation of The X Window System has provided the standard graph- hardware control from application logic with a stable, ical user interface for UNIX systems for more than 15 published client-server network protocol. In this model, years. One result is a large installed base of X applica- the hardware controller is considered the server, and in- tions written in C and C++. In almost all cases, these dividual applications and other components of a com- programs rely on the Xlib library to manage their inter- plete desktop environment are clients.
    [Show full text]
  • Xlib − C Language X Interface Xconsortium Standard Xversion 11, Release 6.7 DRAFT
    Xlib − C Language X Interface XConsortium Standard XVersion 11, Release 6.7 DRAFT James Gettys Cambridge Research Laboratory Digital Equipment Corporation Robert W.Scheifler Laboratory for Computer Science Massachusetts Institute of Technology with contributions from Chuck Adams, Tektronix, Inc. Vania Joloboff, Open Software Foundation Hideki Hiura, Sun Microsystems, Inc. Bill McMahon, Hewlett-Packard Company Ron Newman, Massachusetts Institute of Technology Al Tabayoyon, Tektronix, Inc. Glenn Widener,Tektronix, Inc. Shigeru Yamada, Fujitsu OSSI The X WindowSystem is a trademark of The Open Group. TekHVC is a trademark of Tektronix, Inc. Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1994, 1996, 2002 The Open Group Permission is hereby granted, free of charge, to anyperson obtaining a copyofthis software and associated documenta- tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft- ware. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOTLIMITED TOTHE WARRANTIES OF MERCHANTABILITY,FITNESS FOR A PARTIC- ULAR PURPOSE AND NONINFRINGEMENT.INNOEVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,WHETHER IN AN ACTION OF CONTRACT,TORTOROTH- ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to pro- mote the sale, use or other dealings in this Software without prior written authorization from The Open Group.
    [Show full text]
  • User Interface Software Tools
    User Interface Software Tools Brad A. Myers August 1994 CMU-CS-94-182 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Also appears as Human-Computer Interaction Institute Technical Report CMU-HCII-94-107 This report supersedes CMU-CS-92-114 from February, 1992, published as: Brad A. Myers. ‘‘State of the Art in User Interface Software Tools,’’ Advances in Human- Computer Interaction, Volume 4. Edited by H. Rex Hartson and Deborah Hix. Norwood, NJ: Ablex Publishing, 1993. pp. 110-150. Abstract Almost as long as there have been user interfaces, there have been special software systems and tools to help design and implement the user interface software. Many of these tools have demonstrated significant productivity gains for programmers, and have become important commercial products. Others have proven less successful at supporting the kinds of user interfaces people want to build. This article discusses the different kinds of user interface software tools, and investigates why some approaches have worked and others have not. Many examples of commercial and research systems are included. Finally, current research directions and open issues in the field are discussed. This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037, ARPA Order No. B326. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of NCCOSC or the U.S. Government. CR CATEGORIES AND SUBJECT DESCRIPTORS: D.2.2 [Software Engineering]: Tools and Techniques-User Interfaces; H.1.2 [Models and Principles]: User/Machine Systems-Human Factors; H.5.2 [Information Interfaces and Presentation]: User Interfaces-User Interface Management Systems; I.2.2 [Artificial Intelligence]: Automatic Programming-Program Synthesis; ADDITIONAL KEYWORDS AND PHRASES: User Interface Software, Toolkits, Interface Builders, User Interface Development Environments.
    [Show full text]
  • The Itsy Pocket Computer
    O C T O B E R 2 0 0 0 WRL Research Report 2000/6 The Itsy Pocket Computer Joel F. Bartlett Lawrence S. Brakmo Keith I. Farkas William R. Hamburgen Timothy Mann Marc A. Viredaz Carl A. Waldspurger Deborah A. Wallach Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA The Western Research Laboratory (WRL), located in Palo Alto, California, is part of Compaq's Corporate Research group. WRL was founded by Digital Equipment Corpora- tion in 1982. Our focus is information technology that is relevant to the technical strategy of the Corporation, and that has the potential to open new business opportunities. Research at WRL includes Internet protocol design and implementation, tools for binary optimization, hardware and software mechanisms to support scalable shared memory, graphics VLSI ICs, handheld computing, and more. Our tradition at WRL is to test our ideas by extensive software or hardware prototyping. We publish the results of our work in a variety of journals, conferences, research reports, and technical notes. This document is a research report. Research reports are normally accounts of completed research and may include material from earlier technical notes. We use technical notes for rapid distribution of technical material; usually this represents research in progress. You can retrieve research reports and technical notes via the World Wide Web at: http://www.research.compaq.com/wrl/ You can request printed copies of research reports and technical notes, when available, by mailing your order to us at: Technical Report Distribution Compaq Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA You can also request reports and notes via electronic mail.
    [Show full text]
  • Solaris X Window System Reference Manual
    Solaris X Window System Reference Manual Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, CA 94043 U.S.A. 1995 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 USA. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Portions of this product may be derived from the UNIX system, licensed from UNIX System Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third- party software, including font technology in this product, is protected by copyright and licensed from Sun's Suppliers. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. TRADEMARKS Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc.
    [Show full text]