Original Article Potential Targets and Clinical Value of Mir-490-5P in Hepatocellular Carcinoma: a Study Based on TCGA, Qrt-PCR and Bioinformatics Analyses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Environmental Influences on Endothelial Gene Expression
ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community. -
Supplemental Table 3 - Male Genes Differentially Expressed > 1.5-Fold Among Strains in E11.5 XY Gonads
Supplemental Table 3 - Male genes differentially expressed > 1.5-fold among strains in E11.5 XY gonads. Male genes differentially expressed between C57BL/6J and 129S1/SvImJ. Note: Positive fold values reflect male genes that are up regulated in C57BL/6J relative to 129S1/SvImJ. Fold Diff Gene symbol Genbank acc Description 10.77 Gcnt1 NM_173442 Mus musculus glucosaminyl (N-acetyl) transferase 1, core 2 (Gcnt1), mRNA [NM_173442] 5.50 Afp NM_007423 Mus musculus alpha fetoprotein (Afp), mRNA [NM_007423] 4.95 Hnf4a NM_008261 Mus musculus hepatic nuclear factor 4, alpha (Hnf4a), mRNA [NM_008261] 4.71 Ppp1r14c AK082372 Mus musculus 0 day neonate cerebellum cDNA, RIKEN full-length enriched library, clone:C230042N14 product:hypothetical protein, full insert sequence. [AK082372] 4.41 Gorasp2 AK020521 Mus musculus 12 days embryo embryonic body between diaphragm region and neck cDNA, RIKEN full-length enriched library, clone:9430094F20 product:inferred: golgi reassembly stacking protein 2, full insert sequence. [AK020521] 3.69 Tmc7 NM_172476 Mus musculus transmembrane channel-like gene family 7 (Tmc7), mRNA [NM_172476] 2.97 Mt2 NM_008630 Mus musculus metallothionein 2 (Mt2), mRNA [NM_008630] 2.62 Gstm6 NM_008184 Mus musculus glutathione S-transferase, mu 6 (Gstm6), mRNA [NM_008184] 2.43 Adhfe1 NM_175236 Mus musculus alcohol dehydrogenase, iron containing, 1 (Adhfe1), mRNA [NM_175236] 2.38 Txndc2 NM_153519 Mus musculus thioredoxin domain containing 2 (spermatozoa) (Txndc2), mRNA [NM_153519] 2.30 C030038J10Rik AK173336 Mus musculus mRNA for mKIAA2027 -
Supplemental Information IRF4 Transcription Factor-Dependent Cd11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 C
Immunity, Volume 38 Supplemental Information IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses Andreas Schlitzer, Naomi McGovern, Pearline Teo, Teresa Zelante, Koji Atarashi, Donovan Low, Adrian W.S. Ho, Peter See, Amanda Shin, Pavandip Singh Wasan, Guillaume Hoeffel, Benoit Malleret, Alexander Heiseke, Samantha Chew, Laura Jardine, Harriet A. Purvis, Catharien M.U. Hilkens, John Tam, Michael Poidinger, E. Richard Stanley, Anne B. K rug, Laurent Renia, Baalasubramanian Sivasankar, Lai Guan Ng, Matthew Collin, Paola Ricciardi-Castagnoli, Kenya Honda, Muzlifah Haniffa, and Florent Ginhoux Supplemental Inventory 1. Supplemental Figures and Tables Figure S1, Related to Figure 1 Figure S2, Related to Figure 2 and 3 Figure S3, Related to Figure 4 Figure S4, Related to Figure 5 Figure S5, Related to Figure 5 Figure S6, Related to Figure 7 Table S1, Related to Figure 3 Table S2, Related to Figure 6 Table S3, Related to Figure 6 2. Supplemental Experimental Procedures 3. Supplemental References Supplementary figure 1 Sorting strategy for mouse lung and small intestinal DC A Sorting strategy, Lung Singlets Dapi-CD45+ 250K 250K 250K 105 200K 200K 200K 104 A I - 150K 150K 150K C P C C 3 10 S A S S 100K 100K S 100K D S S 102 50K 50K 50K 0 0 0 0 0 50K 100K 150K 200K 250K 0 50K 100K 150K 200K 250K 0 103 104 105 0 103 104 105 FSC FSC-W CD45 GR1 Auto Fluor.- MHCII+ GR1- SSClow CD11c+ CD11b+ 250K 105 105 105 200K 4 104 10 104 150K I 3 I 3 4 3 0 10 3 C 2 H 10 10 100K 1 S D C D S C M 2 C 10 50K 0 0 0 0 0 102 103 104 105 0 103 104 105 0 103 104 105 0 103 104 105 Auto fluor. -
A Human Population-Based Organotypic in Vitro Model for Cardiotoxicity Screening1
ALTEX preprint published July 8, 2018 doi:10.14573/altex.1805301 Research Article A human population-based organotypic in vitro model for cardiotoxicity screening1 Fabian A. Grimm1, Alexander Blanchette1, John S. House2, Kyle Ferguson1, Nan-Hung Hsieh1, Chimeddulam Dalaijamts1, Alec A. Wright1, Blake Anson5, Fred A. Wright3,4, Weihsueh A. Chiu1, Ivan Rusyn1 1Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA; 2Bioinformatics Research Center, 3Department of Biological Sciences, and 4Department of Statistics, North Carolina State University, Raleigh, NC, USA; 5Cellular Dynamics International, Madison, WI, USA Abstract Assessing inter-individual variability in responses to xenobiotics remains a substantial challenge, both in drug development with respect to pharmaceuticals and in public health with respect to environmental chemicals. Although approaches exist to characterize pharmacokinetic variability, there are no methods to routinely address pharmacodynamic variability. In this study, we aimed to demonstrate the feasibility of characterizing inter-individual variability in a human in vitro model. Specifically, we hypothesized that genetic variability across a population of iPSC- derived cardiomyocytes translates into reproducible variability in both baseline phenotypes and drug responses. We measured baseline and drug-related effects in iPSC-derived cardiomyocytes from 27 healthy donors on kinetic Ca2+ flux and high-content live cell imaging. Cells were treated in concentration-response with cardiotoxic drugs: isoproterenol (β- adrenergic receptor agonist/positive inotrope), propranolol (β-adrenergic receptor antagonist/negative inotrope), and cisapride (hERG channel inhibitor/QT prolongation). Cells from four of the 27 donors were further evaluated in terms of baseline and treatment-related gene expression. Reproducibility of phenotypic responses was evaluated across batches and time. -
Gene Expression of Osteosarcoma Cells on Various Coated Titanium Materials
MOLECULAR & CELLULAR TOXICOLOGY, Vol. 3, No. 1, 36-45, March 2007 Gene Expression of Osteosarcoma Cells on Various Coated Titanium Materials Sung-Hwa Sohn1, Jae Bun Lee2, Ki-Nam Kim1, are made with Ti alloys. However, the exact effect of In Kyoung Kim1, Seung Ho Lee1, Hye Won Kim1, Ti on osteoblasts is still unknown2-4. Successful ap- Sang-Hui Seo1, Yu-Ri Kim1, Sang-Wan Shin2, plication of such materials for bone regeneration Jae-Jun Ryu2 & Meyoung-Kon Kim1 often involved mixing with autogenous bone, a sour- ce of osteoblastic cells and precursors2. 1Department of Biochemistry & Molecular Biology Surface topography may affect the formation of a 2Department of Dentistry, College of Medicine, Korea University, fibrous capsule around implants, inflammatory res- Seoul 136-705, Korea ponse at tissue-implant interface, fibroblast attach- Correspondence and requests for materials should be addressed ment, angiogenesis, epithelial down-growth around to M-K. Kim ([email protected]) percutaneous devices, and many cellular processes such as cellular differentiation, transcription, cell Accepted 8 March 2007 metabolism, protein production, and phenotypic ex- pression1,3,5-7. Diverse implant surface may contribute to the regulation of osteoblast differentiation by infl- Abstract uencing the level of gene expression of key osteo- genic factors7,8. Morphometric analyses had shown Several features of the implant surface, such as differences in bone-implant contact percentages with topography, roughness, and composition play a the varying of surface characteristics, as well as a relevant role in implant integration with bone. This sensitivity of cells to surface topography9,10. Gene ex- study was conducted in order to determine the pression in response to the placement of implants effects of different-coatings on Ti surfaces on the with different surface topographies11-16. -
Anti-Inflammatory Role of Curcumin in LPS Treated A549 Cells at Global Proteome Level and on Mycobacterial Infection
Anti-inflammatory Role of Curcumin in LPS Treated A549 cells at Global Proteome level and on Mycobacterial infection. Suchita Singh1,+, Rakesh Arya2,3,+, Rhishikesh R Bargaje1, Mrinal Kumar Das2,4, Subia Akram2, Hossain Md. Faruquee2,5, Rajendra Kumar Behera3, Ranjan Kumar Nanda2,*, Anurag Agrawal1 1Center of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110025, India. 2Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. 3School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, Orissa, 768019, India. 4Department of Respiratory Sciences, #211, Maurice Shock Building, University of Leicester, LE1 9HN 5Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia- 7003, Bangladesh. +Contributed equally for this work. S-1 70 G1 S 60 G2/M 50 40 30 % of cells 20 10 0 CURI LPSI LPSCUR Figure S1: Effect of curcumin and/or LPS treatment on A549 cell viability A549 cells were treated with curcumin (10 µM) and/or LPS or 1 µg/ml for the indicated times and after fixation were stained with propidium iodide and Annexin V-FITC. The DNA contents were determined by flow cytometry to calculate percentage of cells present in each phase of the cell cycle (G1, S and G2/M) using Flowing analysis software. S-2 Figure S2: Total proteins identified in all the three experiments and their distribution betwee curcumin and/or LPS treated conditions. The proteins showing differential expressions (log2 fold change≥2) in these experiments were presented in the venn diagram and certain number of proteins are common in all three experiments. -
Characterization of Glomerular Extracellular Matrix in Iga Nephropathy by Proteomic Analysis of Laser-Captured Microdissected Gl
Paunas et al. BMC Nephrology (2019) 20:410 https://doi.org/10.1186/s12882-019-1598-1 RESEARCH ARTICLE Open Access Characterization of glomerular extracellular matrix in IgA nephropathy by proteomic analysis of laser-captured microdissected glomeruli Flavia Teodora Ioana Paunas1,2* , Kenneth Finne2, Sabine Leh2,3, Tarig Al-Hadi Osman2, Hans-Peter Marti2,4, Frode Berven5 and Bjørn Egil Vikse1,2 Abstract Background: IgA nephropathy (IgAN) involves mesangial matrix expansion, but the proteomic composition of this matrix is unknown. The present study aimed to characterize changes in extracellular matrix in IgAN. Methods: In the present study we used mass spectrometry-based proteomics in order to quantitatively compare protein abundance between glomeruli of patients with IgAN (n = 25) and controls with normal biopsy findings (n = 15). Results: Using a previously published paper by Lennon et al. and cross-referencing with the Matrisome database we identified 179 extracellular matrix proteins. In the comparison between IgAN and controls, IgAN glomeruli showed significantly higher abundance of extracellular matrix structural proteins (e.g periostin, vitronectin, and extracellular matrix protein 1) and extracellular matrix associated proteins (e.g. azurocidin, myeloperoxidase, neutrophil elastase, matrix metalloproteinase-9 and matrix metalloproteinase 2). Periostin (fold change 3.3) and azurocidin (3.0) had the strongest fold change between IgAN and controls; periostin was also higher in IgAN patients who progressed to ESRD as compared to patients who did not. Conclusion: IgAN is associated with widespread changes of the glomerular extracellular matrix proteome. Proteins important in glomerular sclerosis or inflammation seem to be most strongly increased and periostin might be an important marker of glomerular damage in IgAN. -
Sex-Dependent Differences in the Secretome of Human Endothelial Cells Maria Grazia Cattaneo1*†, Cristina Banfi2†, Maura Brioschi2, Donatella Lattuada1 and Lucia M
Cattaneo et al. Biology of Sex Differences (2021) 12:7 https://doi.org/10.1186/s13293-020-00350-3 RESEARCH Open Access Sex-dependent differences in the secretome of human endothelial cells Maria Grazia Cattaneo1*†, Cristina Banfi2†, Maura Brioschi2, Donatella Lattuada1 and Lucia M. Vicentini1 Abstract Background: Cellular sex has rarely been considered as a biological variable in preclinical research, even when the pathogenesis of diseases with predictable sex differences is studied. In this perspective, proteomics, and “omics” approaches in general, can provide powerful tools to obtain comprehensive cellular maps, thus favoring the discovery of still unknown sex-biased physio-pathological mechanisms. Methods: We performed proteomic and Gene Ontology (GO) analyses of the secretome from human serum- deprived male and female endothelial cells (ECs) followed by ELISA validation. Apoptosis was detected by FACS and Western blot techniques and efferocytosis through the ability of the macrophage cell line RAW 264.7 to engulf apoptotic ECs. PTX3 mRNA levels were measured by RT-qPCR. Results: Proteomic and GO analyses of the secretome from starved human male and female ECs demonstrated a significant enrichment in proteins related to cellular responses to stress and to the regulation of apoptosis in the secretome of male ECs. Accordingly, a higher percentage of male ECs underwent apoptosis in response to serum deprivation in comparison with female ECs. Among the secreted proteins, we reliably found higher levels of PTX3 in the male EC secretome. The silencing of PTX3 suggested that male ECs were dependent on its expression to properly carry out the efferocytotic process. At variance, female EC efferocytosis seemed to be independent on PTX3 expression. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Downloaded the “Top Edge” Version
bioRxiv preprint doi: https://doi.org/10.1101/855338; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Drosophila models of pathogenic copy-number variant genes show global and 2 non-neuronal defects during development 3 Short title: Non-neuronal defects of fly homologs of CNV genes 4 Tanzeen Yusuff1,4, Matthew Jensen1,4, Sneha Yennawar1,4, Lucilla Pizzo1, Siddharth 5 Karthikeyan1, Dagny J. Gould1, Avik Sarker1, Yurika Matsui1,2, Janani Iyer1, Zhi-Chun Lai1,2, 6 and Santhosh Girirajan1,3* 7 8 1. Department of Biochemistry and Molecular Biology, Pennsylvania State University, 9 University Park, PA 16802 10 2. Department of Biology, Pennsylvania State University, University Park, PA 16802 11 3. Department of Anthropology, Pennsylvania State University, University Park, PA 16802 12 4 contributed equally to work 13 14 *Correspondence: 15 Santhosh Girirajan, MBBS, PhD 16 205A Life Sciences Building 17 Pennsylvania State University 18 University Park, PA 16802 19 E-mail: [email protected] 20 Phone: 814-865-0674 21 1 bioRxiv preprint doi: https://doi.org/10.1101/855338; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 22 ABSTRACT 23 While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non- 24 neuronal phenotypes, functional studies evaluating these regions have focused on the molecular 25 basis of neuronal defects. -
Unique Concatenate (Description)
Unique Concatenate (Description) Sequence Variable modifications ([position] description) CP-690,550_1CP-690,550_2NVP-BSK805_1NVP-BSK805_2NVP-BBT594 123 ABI1 Isoform 1 of Abl interactor 1 TLEPVKPPTVPNDYMTSPAR [14] Phospho (Y) 5.355704 -0.70208 ABL1 Isoform IA of Proto-oncogene tyrosine-protein kinase ABL1 LMTGDTYTAHAGAK [7] Phospho (Y) -1.08927 -1.09868 -3.96523 ACLY ATP-citrate synthase TTDGVYEGVAIGGDR [6] Phospho (Y) 0.252136 ACSM3 SA hypertension-associated homolog isoform 1 LGIPEYFNFAK [6] Phospho (Y) -0.44989 1.66553 ACTB Actin, cytoplasmic 1 GYSFTTTAER [2] Phospho (Y) 1.066328 -0.37053 -0.0692 ACTB Actin, cytoplasmic 1 KDLYANTVLSGGTTMYPGIADR [4] Phospho (Y) -0.97756 0.141466 1.200179 -1.01433 -1.19347 AGPS Alkyldihydroxyacetonephosphate synthase, peroxisomal precursor IRPVPEYQK [7] Phospho (Y) -0.39593 ALDH1A1 Retinal dehydrogenase 1 ANNTFYGLSAGVFTK [6] Phospho (Y) -0.02661 -1.93143 ALDOA Fructose-bisphosphate aldolase A PYQYPALTPEQK [2] Phospho (Y) 8.071839 -0.26633 ANXA2P2 Putative annexin A2-like protein LSLEGDHSTPPSAYGSVK [14] Phospho (Y) -1.49415 -2.13203 -2.06654 ANXA5 Annexin A5 LYDAYELK [5] Phospho (Y) -0.42726 7.051289 -1.37202 ATP1A1 Isoform Short of Sodium/potassium-transporting ATPase subunit alpha-1 GIVVYTGDR [5] Phospho (Y) -0.32719 BTK Tyrosine-protein kinase BTK HYVVCSTPQSQYYLAEK [12] Phospho (Y) -4.27596 BTK Tyrosine-protein kinase BTK VVALYDYMPMNANDLQLR [6] Phospho (Y)|[9] Oxidation (M)|[11] Oxidation (M) -2.48212 -1.06083 C11orf59 UPF0404 protein C11orf59 ALNGAEPNYHSLPSAR [9] Phospho (Y) -0.52861 -0.97348 C20orf4 -
Transcriptomic and Proteomic Profiling Provides Insight Into
BASIC RESEARCH www.jasn.org Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy † † ‡ Peidi Liu,* Emelie Lassén,* Viji Nair, Celine C. Berthier, Miyuki Suguro, Carina Sihlbom,§ † | † Matthias Kretzler, Christer Betsholtz, ¶ Börje Haraldsson,* Wenjun Ju, Kerstin Ebefors,* and Jenny Nyström* *Department of Physiology, Institute of Neuroscience and Physiology, §Proteomics Core Facility at University of Gothenburg, University of Gothenburg, Gothenburg, Sweden; †Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; ‡Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan; |Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and ¶Integrated Cardio Metabolic Centre, Karolinska Institutet Novum, Huddinge, Sweden ABSTRACT IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type–specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell–positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell–positive standard genes.