Design of Thermal Barrier Coatings Nicholas Curry Ii
Total Page:16
File Type:pdf, Size:1020Kb
PhD Thesis Production Technology 2014 No.3 Design of Thermal Barrier Coatings nicholas curry ii University West SE-46186 Trollhättan Sweden +46 52022 30 00 www.hv.se © Nicholas Curry 2014 ISBN 978-91-977943-9-8 iii Acknowledgements It’s said that a PhD thesis is never really finished….only that time is called and the tools are put down…. So after five years, here is my unfinished work. I would first like to thank my supervisors at University West; Per Nylen and Nicolaie Markocsan. I’ve learned a great deal during the last few years and I really appreciate the huge degree of freedom at work. It’s been a pleasure to work with you both. To Stefan Björklund, I couldn’t have asked for a better guy to work with over the last few years. It’s been enlightening, entertaining and downright hilarious. Thank you! Thanks to Lars Östergren for all the support with the projects from Volvo/GKN and with arranging spraying and testing. To the people at the Production Technology Centre, past and present; a big thank you for keeping the office an entertaining place to work. You know who you are (again)! I’m grateful also to the staff at the GKN Thermal Spray Department for their work in all the projects and for providing a nice working environment during my time there. To my family, I couldn’t ask for more support over the years. That I’ve reached this point is thanks to you all. There are many people who have helped me get this far; too many to mention here. To them I can only say thank you. 17th of January 2014 iv v Populärvetenskaplig Sammanfattning Nyckelord: Kraftgenererande gasturbiner; Gasturbiner för flygmotorer; Termiska värmebarriärskikt; Plasmasprutning; Suspensionsplasmasprutning; Värmeledningsförmåga; Termisk utmattning; Termochock testning Termiska barriärbeläggningar (TBC s) används för att ge både värmeisolering och oxidationsskydd för olika gasturbinkomponenter som utsätts för höga temperaturer. Utvecklingen av gasturbiner både för kraftgenererings- och flygapplikationer har lett till konstruktioner där driftsförhållandena överskrider gränserna för de flesta konventionella konstruktionsmaterial. Det har därmed funnits en drivkraft att utveckla värmebarriärbeläggningar som möjliggöra en högre driftstemperatur. Fokus i denna avhandling har varit att skapa nya värmebarriärbeläggningar med lägre värmeledningsförmåga och längre livslängd än de beläggningar som används inom industrin idag. Arbetet har genomförts i två delar. Den första delen har ägnats åt värmebarriärbeläggningar för kraftgenererande applikationer. Beläggningarna har i denna del produceras med hjälp av atmosfärisk plasmasprutning (APS). Den andra delen av arbetet har dedikerats åt beläggningar både för industriella gasturbiner och för flygmotorkomponenter. Beläggningarna har i denna del skapats med suspensionsplasmasprutning (SPS). Rutten som vidtagits för att kunna uppnå målen avseende låg värmeisolering och livslängd hos beläggningarna har varit tvåfaldig. För det första har ett alternativt stabiliseringsmaterial valts för zirkoniumoxidsystemet i form av Dysprosiumoxid. För det andra har tillsatsmaterialets (pulvrets) morfologi inklusive processparametrar varierats för att skapa beläggningar med gynnsam porositet i sin mikrostruktur. Suspensionssprutning som har tillämpats i andra delen av arbetet är en ny teknik för vilken processparametrar och tillsatsmaterial ännu inte är kända. Fokus i arbetet har här därför varit att karakterisera beläggningarnas livslängd och termiska egenskaper som funktion av olika processparametrar och tillsatsmaterial. Resultaten från arbetet visar att dysprosiumoxid som alternativ stabilisator ger en minskad värmeledningsförmåga. Skillnaden i värmeledningsförmåga är liten vid rumstemperatur med bli signifikant vid höga temperaturer och vid längre driftstider. Dock tyder resultaten på att materialstabiliteten minskar vid mycket höga driftstemperaturer. Vägen där porositeten i det keramiska skikten förändrades, för t skapa signifikant lägre värmeledningsförmåga, visade sig ännu mer framgångsrik. vi När det gäller beläggningarnas livslängd, visade det sig att, jämfört med dagens industristandard, kan en dubbelt så lång termisk utmattningslivslängd uppnås genom att optimera porositeten i beläggningen. Den önskvärda porositeten kunde dels åstadkommas genom att tillsätta en polymer till tillsatsmaterialet. Polymeren skapar här globulära porer i kombination med delamineringar, en mikrostruktur som visade sig mycket motståndskraftig mot termisk utmattning. Suspensionsprutade beläggningar visade sig ha signifikant bättre egenskaper både avseende värmeledningsförmåga och termisk utmattning. Kolumnära mikrostrukturer kunde åstadkommas med hjälp av denna sprutteknik. Denna typ av mikrostruktur kan möjliggöra sprutning av töjningsresistenta beläggningar i framtidens i gasturbinmotorer. vii Abstract Title: Design of Thermal Barrier Coatings Keywords: Industrial Gas Turbine; Aero Turbine; Thermal Barrier Coating; Atmospheric Plasma Spraying; Suspension Plasma Spraying; Thermal Conductivity; Thermo-cyclic fatigue; Thermal Shock ISBN: 978-91-977943-9-8 Thermal barrier coatings (TBC’s) are used to provide both thermal insulation and oxidation protection to high temperature components within gas turbines. The development of turbines for power generation and aviation has led to designs where the operation conditions exceed the upper limits of most conventional engineering materials. As a result there has been a drive to improve thermal barrier coatings to allow the turbine to operate at higher temperatures for longer. The focus of this thesis has been to design thermal barrier coatings with lower conductivity and longer lifetime than those coatings used in industry today. The work has been divided between the development of new generation air plasma spray (APS) TBC coatings for industrial gas turbines and the development of suspension plasma spray (SPS) TBC systems. The route taken to achieve these goals with APS TBC’s has been twofold. Firstly an alternative stabiliser has been chosen for the zirconium oxide system in the form of dysprosia. Secondly, control of the powder morphology and spray parameters has been used to generate coating microstructures with favourable levels of porosity. In terms of development of SPS TBC systems, these coatings are relatively new with many of the critical coating parameters not yet known. The focus of the work has therefore been to characterise their lifetime and thermal properties when produced in a complete TBC system. Results demonstrate that dysprosia as an alternative stabiliser gives a reduction in thermal conductivity. While small at room temperature and in the as produced state; the influence becomes more pronounced at high temperatures and with longer thermal exposure time. The trade-off for this lowered thermal conductivity may be in the loss of high temperature stability. Overall, the greatest sustained influence on thermal conductivity has been from creating coatings with high levels of porosity. viii In relation to lifetime, double the thermo-cyclic fatigue (TCF) life relative to the industrial standard was achieved using a coating with engineered porosity. Introducing a polymer to the spray powder helps to generate large globular pores within the coating together with a large number of delaminations. Such a structure was shown to be highly resistant to TCF testing. SPS TBC’s were shown to have much greater performance relative to their APS counterparts in thermal shock life, TCF life and thermal conductivity. Columnar SPS coatings are a prospective alternative for strain tolerant coatings in gas turbine engines. ix Preface The research presented in this thesis has been carried out at the Production Technology Centre as part of the Thermal Spray research group of University West. Additional experimental work has been carried out at GKN Aerospace Engine Systems at the Thermal Spray Department. The first part of the research work has been performed as part of a larger research project into the development of new thermal barrier coating systems for gas turbine applications. Partners in the project were: GKN Aerospace Engine Systems, who have been responsible for some elements of coating production and providing materials support. Sulzer Metco, who have provided powders for the spray process. Siemens Industrial Turbomachinery, who have been responsible for lifetime testing and are considered as the end user of a future coating. University West, who have acted as overall co-ordinator of the project and carried out the majority of the sample production and evaluation. The second part of the research work has been in the evaluation and development of Suspension Plasma Spray (SPS) as a game changing technology in the production of TBC coatings for aero engine and industrial gas turbine components. The project partners were: Progressive Surface - who were responsible for SPS coating production Northwest Mettech Corp- provided SPS coatings Treibacher Industrie AG, who supplied suspension for the project and some elements of testing University West, who have provided the bulk of the coating evaluation and produced substrate with bond coat. x List of Appended Publications Paper 1- Next Generation TBC’s for Gas Turbine Applications Nicholas Curry, Nicolaie Markocsan, Xin-Hai Li, Aurélien Tricoire, Mitch Dorfman Journal of Thermal Spray Technology, Vol. 20, no. 1–2, pp. 108–115, Nov. 2010. Paper 2- Evaluation of Thermal Properties and Lifetime of Dysprosia Stabilised Thermal Barrier Coatings Nicholas Curry,