The Java® Virtual Machine Specification Java SE 9 Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Course Material on OBJECT ORIENTED PROGRAMMING by Mr
CS 8392 OBJECT ORIENTED PROGRAMMING A Course Material on OBJECT ORIENTED PROGRAMMING By Mr.C.KAMATCHI ASSISTANT PROFESSOR DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING PRATHYUSHA ENGINEERING COLLEGE 1 CS 8392 OBJECT ORIENTED PROGRAMMING CS 8392 OBJECT ORIENTED PROGRAMMING S.NO CONTENTS PAGE NO Unit I – OVERVIEW 1.1 Why Object-Oriented Programming in C++ 9 1.1.1 History of C++ 9 1.1.2 Why C++? 9 1.2 Native Types 10 1.2.1 Implicit conversions (coercion) 10 1.2.2 Enumeration Types 10 1.3 Native C++ Statements 11 1.4 Functions and pointers 11 1.4.1 functions 11 1.4.2 Declarations 12 1.4.3 Parameters and arguments 13 1.4.4 Parameters 14 1.4.5 by pointer 14 1.5 Pointers 17 1.5.1 Pointer Arithmetic 18 1.6. Implementing Adts In The Base Language. 19 1.6.1Simple ADTs 19 1.6.2 Complex ADTs 19 3 CS 8392 OBJECT ORIENTED PROGRAMMING UNIT II -BASIC CHARACTERISTICS OF OOP 2.1 Data Hiding 21 2.2 Member Functions 22 2.2.1 Defining member functions 22 2.3 Object Creation And Destruction 23 2.3.1 Object Creation 23 2.3.2 Accessing class members 24 2.3.3 Creation methods 26 2.3.4 Object destruction 27 2.4 Polymorphism And Data Abstraction 28 2.4.1 Polymorphism 28 2.5 Data Abstraction 30 2.5.1 Procedural Abstraction 30 2.5.2Modular Abstraction 31 2.5.3 Data Abstraction 31 2.6 Iterators 33 2.7 Containers 34 UNIT III -ADVANCED PROGRAMMING 3.1 Templates 36 3.1.1 Templates and Classes 38 3.1.2 Template Meta-programming overview 42 3.1.3 Compile-time programming 42 3.1.4 The nature of template meta-programming 42 4 CS 8392 OBJECT ORIENTED PROGRAMMING 3.1.5 Building blocks 44 3.2 Generic programming 47 3.2.1 Type parameter 47 3.2.2 A generic function 48 3.2.3 Subprogram parameters 48 3.3 Standard Template Library (Stl) 49 3.3.1 History 50 3.3.2 List of STL implementations. -
Cross-Platform Language Design
Cross-Platform Language Design THIS IS A TEMPORARY TITLE PAGE It will be replaced for the final print by a version provided by the service academique. Thèse n. 1234 2011 présentée le 11 Juin 2018 à la Faculté Informatique et Communications Laboratoire de Méthodes de Programmation 1 programme doctoral en Informatique et Communications École Polytechnique Fédérale de Lausanne pour l’obtention du grade de Docteur ès Sciences par Sébastien Doeraene acceptée sur proposition du jury: Prof James Larus, président du jury Prof Martin Odersky, directeur de thèse Prof Edouard Bugnion, rapporteur Dr Andreas Rossberg, rapporteur Prof Peter Van Roy, rapporteur Lausanne, EPFL, 2018 It is better to repent a sin than regret the loss of a pleasure. — Oscar Wilde Acknowledgments Although there is only one name written in a large font on the front page, there are many people without which this thesis would never have happened, or would not have been quite the same. Five years is a long time, during which I had the privilege to work, discuss, sing, learn and have fun with many people. I am afraid to make a list, for I am sure I will forget some. Nevertheless, I will try my best. First, I would like to thank my advisor, Martin Odersky, for giving me the opportunity to fulfill a dream, that of being part of the design and development team of my favorite programming language. Many thanks for letting me explore the design of Scala.js in my own way, while at the same time always being there when I needed him. -
C++ for You++, AP Edition, by Maria Litvin and Gary Litvin Is Licensed Under a Creative Commons Attribution-Noncommercial-Sharealike 3.0 Unported License
An Introduction to Programming and Computer Science Maria Litvin Phillips Academy, Andover, Massachusetts Gary Litvin Skylight Software, Inc. Skylight Publishing Andover, Massachusetts Copyright © 1998 by Maria Litvin and Gary Litvin C++ for You++, AP Edition, by Maria Litvin and Gary Litvin is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. You are free: • to Share — to copy, distribute and transmit the work • to Remix — to adapt the work Under the following conditions: • Attribution — You must attribute the work to Maria Litvin and Gary Litvin (but not in any way that suggests that they endorse you or your use of the work). On the title page of your copy or adaptation place the following statement: Adapted from C++ for You++ by Maria Litvin and Gary Litvin, Skylight Publishing, 1998, available at http://www.skylit.com. • Noncommercial — You may not use this work for commercial purposes. • Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. See http://creativecommons.org/licenses/by-nc-sa/3.0/ for details. Skylight Publishing 9 Bartlet Street, Suite 70 Andover, MA 01810 (978) 475-1431 e-mail: [email protected] web: http://www.skylit.com Library of Congress Catalog Card Number: 97–091209 ISBN 0-9654853-9-0 To Marg and Aaron Brief Contents Part One. Programs: Syntax and Style Chapter 1. Introduction to Hardware and Software 3 Chapter 2. A First Look at a C++ Program 23 Chapter 3. Variables and Constants 49 Chapter 4. -
Blossom: a Language Built to Grow
Macalester College DigitalCommons@Macalester College Mathematics, Statistics, and Computer Science Honors Projects Mathematics, Statistics, and Computer Science 4-26-2016 Blossom: A Language Built to Grow Jeffrey Lyman Macalester College Follow this and additional works at: https://digitalcommons.macalester.edu/mathcs_honors Part of the Computer Sciences Commons, Mathematics Commons, and the Statistics and Probability Commons Recommended Citation Lyman, Jeffrey, "Blossom: A Language Built to Grow" (2016). Mathematics, Statistics, and Computer Science Honors Projects. 45. https://digitalcommons.macalester.edu/mathcs_honors/45 This Honors Project - Open Access is brought to you for free and open access by the Mathematics, Statistics, and Computer Science at DigitalCommons@Macalester College. It has been accepted for inclusion in Mathematics, Statistics, and Computer Science Honors Projects by an authorized administrator of DigitalCommons@Macalester College. For more information, please contact [email protected]. In Memory of Daniel Schanus Macalester College Department of Mathematics, Statistics, and Computer Science Blossom A Language Built to Grow Jeffrey Lyman April 26, 2016 Advisor Libby Shoop Readers Paul Cantrell, Brett Jackson, Libby Shoop Contents 1 Introduction 4 1.1 Blossom . .4 2 Theoretic Basis 6 2.1 The Potential of Types . .6 2.2 Type basics . .6 2.3 Subtyping . .7 2.4 Duck Typing . .8 2.5 Hindley Milner Typing . .9 2.6 Typeclasses . 10 2.7 Type Level Operators . 11 2.8 Dependent types . 11 2.9 Hoare Types . 12 2.10 Success Types . 13 2.11 Gradual Typing . 14 2.12 Synthesis . 14 3 Language Description 16 3.1 Design goals . 16 3.2 Type System . 17 3.3 Hello World . -
Distributive Disjoint Polymorphism for Compositional Programming
Distributive Disjoint Polymorphism for Compositional Programming Xuan Bi1, Ningning Xie1, Bruno C. d. S. Oliveira1, and Tom Schrijvers2 1 The University of Hong Kong, Hong Kong, China fxbi,nnxie,[email protected] 2 KU Leuven, Leuven, Belgium [email protected] Abstract. Popular programming techniques such as shallow embeddings of Domain Specific Languages (DSLs), finally tagless or object algebras are built on the principle of compositionality. However, existing program- ming languages only support simple compositional designs well, and have limited support for more sophisticated ones. + This paper presents the Fi calculus, which supports highly modular and compositional designs that improve on existing techniques. These im- provements are due to the combination of three features: disjoint inter- section types with a merge operator; parametric (disjoint) polymorphism; and BCD-style distributive subtyping. The main technical challenge is + Fi 's proof of coherence. A naive adaptation of ideas used in System F's + parametricity to canonicity (the logical relation used by Fi to prove co- herence) results in an ill-founded logical relation. To solve the problem our canonicity relation employs a different technique based on immediate substitutions and a restriction to predicative instantiations. Besides co- herence, we show several other important meta-theoretical results, such as type-safety, sound and complete algorithmic subtyping, and decidabil- ity of the type system. Remarkably, unlike F<:'s bounded polymorphism, + disjoint polymorphism in Fi supports decidable type-checking. 1 Introduction Compositionality is a desirable property in programming designs. Broadly de- fined, it is the principle that a system should be built by composing smaller sub- systems. -
Bs-6026-0512E.Pdf
THERMAL PRINTER SPEC BAS - 6026 1. Basic Features 1.) Type : PANEL Mounting or DESK top type 2.) Printing Type : THERMAL PRINT 3.) Printing Speed : 25mm / SEC 4.) Printing Column : 24 COLUMNS 5.) FONT : 24 X 24 DOT MATRIX 6.) Character : English, Numeric & Others 7.) Paper width : 57.5mm ± 0.5mm 8.) Character Size : 5times enlarge possible 9.) INTERFACE : CENTRONICS PARALLEL I/F SERIAL I/F 10.) DIMENSION : 122(W) X 90(D) X 129(H) 11.) Operating Temperature range : 0℃ - 50℃ 12.) Storage Temperature range : -20℃ - 70℃ 13.) Outlet Power : DC 12V ( 1.6 A )/ DC 5V ( 2.5 A) 14.) Application : Indicator, Scale, Factory automation equipments and any other data recording, etc.,, - 1 - 1) SERIAL INTERFACE SPECIFICATION * CONNECTOR : 25 P FEMALE PRINTER : 4 P CONNECTOR 3 ( TXD ) ----------------------- 2 ( RXD ) 2 2 ( RXD ) ----------------------- 1 ( TXD ) 3 7 ( GND ) ----------------------- 4 ( GND ) 5 DIP SWITCH BUAD RATE 1 2 3 ON ON ON 150 OFF ON ON 300 ON OFF ON 600 OFF OFF ON 1200 ON ON OFF 2400 OFF ON OFF 4800 ON OFF OFF 9600 OFF OFF OFF 19200 2) BAUD RATE SELECTION * PROTOCOL : XON / XOFF Type DIP SWITCH (4) ON : Combination type * DATA BIT : 8 BIT STOP BIT : 1 STOP BIT OFF: Complete type PARITY CHECK : NO PARITY * DEFAULT VALUE : BAUD RATE (9600 BPS) - 2 - PRINTING COMMAND * Explanation Command is composed of One Byte Control code and ESC code. This arrangement is started with ESC code which is connected by character & numeric code The control code in Printer does not be still in standardization (ESC Control Code). All printers have a code structure by themselves. -
Cormac Flanagan Fritz Henglein Nate Nystrom Gavin Bierman Jan Vitek Gilad Bracha Philip Wadler Jeff Foster Tobias Wrigstad Peter Thiemann Sam Tobin-Hochstadt
PC: Amal Ahmed SC: Matthias Felleisen Robby Findler (chair) Cormac Flanagan Fritz Henglein Nate Nystrom Gavin Bierman Jan Vitek Gilad Bracha Philip Wadler Jeff Foster Tobias Wrigstad Peter Thiemann Sam Tobin-Hochstadt Organizers: Tobias Wrigstad and Jan Vitek Schedule Schedule . 3 8:30 am – 10:30 am: Invited Talk: Scripting in a Concurrent World . 5 Language with a Pluggable Type System and Optional Runtime Monitoring of Type Errors . 7 Position Paper: Dynamically Inferred Types for Dynamic Languages . 19 10:30 am – 11:00 am: Coffee break 11:00 am – 12:30 pm: Gradual Information Flow Typing . 21 Type Inference with Run-time Logs . 33 The Ciao Approach to the Dynamic vs. Static Language Dilemma . 47 12:30 am – 2:00 pm: Lunch Invited Talk: Scripting in a Concurrent World John Field IBM Research As scripting languages are used to build increasingly complex systems, they must even- tually confront concurrency. Concurrency typically arises from two distinct needs: han- dling “naturally” concurrent external (human- or software-generated) events, and en- hancing application performance. Concurrent applications are difficult to program in general; these difficulties are multiplied in a distributed setting, where partial failures are common and where resources cannot be centrally managed. The distributed sys- tems community has made enormous progress over the past few decades designing specialized systems that scale to handle millions of users and petabytes of data. How- ever, combining individual systems into composite applications that are scalable—not to mention reliable, secure, and easy to develop maintain—remains an enormous chal- lenge. This is where programming languages should be able to help: good languages are designed to facilitate composing large applications from smaller components and for reasoning about the behavior of applications modularly. -
Download the JSR-000202 Java Class File Specification
CHAPTER 4 The class File Format THIS chapter describes the Java virtual machine class file format. Each class file contains the definition of a single class or interface. Although a class or interface need not have an external representation literally contained in a file (for instance, because the class is generated by a class loader), we will colloquially refer to any valid representation of a class or interface as being in the class file format. A class file consists of a stream of 8-bit bytes. All 16-bit, 32-bit, and 64-bit quantities are constructed by reading in two, four, and eight consecutive 8-bit bytes, respectively. Multibyte data items are always stored in big-endian order, where the high bytes come first. In the Java and Java 2 platforms, this format is supported by interfaces java.io.DataInput and java.io.DataOutput and classes such as java.io.DataInputStream and java.io.DataOutputStream. This chapter defines its own set of data types representing class file data: The types u1, u2, and u4 represent an unsigned one-, two-, or four-byte quantity, respectively. In the Java and Java 2 platforms, these types may be read by methods such as readUnsignedByte, readUnsignedShort, and readInt of the interface java.io.DataInput. This chapter presents the class file format using pseudostructures written in a C- like structure notation. To avoid confusion with the fields of classes and class instances, etc., the contents of the structures describing the class file format are referred to as items. Successive items are stored in the class file sequentially, without padding or alignment. -
Type Systems
A Simple Language <t> ::= true | false | if <t> then <t> else <t> | 0 | succ <t> | pred <t> | iszero <t> Type Systems . Simple untyped expressions . Natural numbers encoded as succ … succ 0 . E.g. succ succ succ 0 represents 3 . Pierce Ch. 3, 8, 11, 15 . term: a string from this language . To improve readability, we will sometime write parentheses: e.g. iszero (pred (succ 0)) CSE 6341 1 CSE 6341 2 Semantics (informally) Equivalent Ways to Define the Syntax . A term evaluates to a value . Inductive definition: the smallest set S s.t. Values are terms themselves . { true, false, 0 } S . Boolean constants: true and false . if t1S, then {succ t1, pred t1, iszero t1 } S . Natural numbers: 0, succ 0, succ (succ 0), … . if t1 , t2 , t3 S, then if t1 then t2 else t3 S . Given a program (i.e., a term), the result . Same thing, written as inference rules of “running” this program is a boolean trueS falseS 0S axioms (no premises) value or a natural number t1S t1S t1St2St3S . if false then 0 else succ 0 succ 0 succ t1 S pred t1 S if t1 then t2 else t3 S . iszero (pred (succ 0)) true t S If we have established the premises . Problematic: succ true or if 0 then 0 else 0 1 (above the line), we can derive the iszero t1 S CSE 6341 3 conclusion (below the line) 4 Why Does This Matter? Inductive Proofs . Key property: for any tS, one of three things . Structural induction – used very often must be true: . -
Semantics and Types for Objects with First-Class Member Names
Semantics and Types for Objects with First-Class Member Names Joe Gibbs Politz Arjun Guha Shriram Krishnamurthi Brown University Cornell University Brown University [email protected] [email protected] [email protected] Abstract In summary, we make the following contributions: Objects in many programming languages are indexed by first-class 1. extract the principle of first-class member names from existing ob strings, not just first-order names. We define λS (“lambda sob”), languages; an object calculus for such languages, and prove its untyped sound- ob 2. provide a dynamic semantics that distills this feature; ness using Coq. We then develop a type system for λS that is built around string pattern types, which describe (possibly infi- 3. identify key problems for type-checking objects in programs nite) collections of members. We define subtyping over such types, that employ first-class member names; extend them to handle inheritance, and discuss the relationship 4. extend traditional record typing with sound types to describe between the two. We enrich the type system to recognize tests objects that use first-class member names; and, for whether members are present, and briefly discuss exposed in- heritance chains. The resulting language permits the ascription 5. briefly discuss a prototype implementation. of meaningful types to programs that exploit first-class member We build up our type system incrementally. All elided proofs and names for object-relational mapping, sandboxing, dictionaries, etc. definitions are available online: We prove that well-typed programs never signal member-not-found errors, even when they use reflection and first-class member names. -
Advanced Logical Type Systems for Untyped Languages
ADVANCED LOGICAL TYPE SYSTEMS FOR UNTYPED LANGUAGES Andrew M. Kent Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Computer Science, Indiana University October 2019 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee Sam Tobin-Hochstadt, Ph.D. Jeremy Siek, Ph.D. Ryan Newton, Ph.D. Larry Moss, Ph.D. Date of Defense: 9/6/2019 ii Copyright © 2019 Andrew M. Kent iii To Caroline, for both putting up with all of this and helping me stay sane throughout. Words could never fully capture how grateful I am to have her in my life. iv ACKNOWLEDGEMENTS None of this would have been possible without the community of academics and friends I was lucky enough to have been surrounded by during these past years. From patiently helping me understand concepts to listening to me stumble through descriptions of half- baked ideas, I cannot thank enough my advisor and the professors and peers that donated a portion of their time to help me along this journey. v Andrew M. Kent ADVANCED LOGICAL TYPE SYSTEMS FOR UNTYPED LANGUAGES Type systems with occurrence typing—the ability to refine the type of terms in a control flow sensitive way—now exist for nearly every untyped programming language that has gained popularity. While these systems have been successful in type checking many prevalent idioms, most have focused on relatively simple verification goals and coarse interface specifications. -
Rupiah: Towards an Expressive Static Type System for Java Pdfsubject
Rupiah: Towards an Expressive Static Type System for Java by John N. Foster A Thesis Submitted in partial fulfillment of of the requirements for the Degree of Bachelor of Arts with Honors in Computer Science WILLIAMS COLLEGE Williamstown, Massachusetts May 20, 2001 Abstract Despite Java’s popularity, several practical limitations imposed by the language’s type sys- tem have become increasingly apparent in recent years. A particularly glaring omission is the lack of a generic mechanism. As a result of this shortcoming, many recent projects have extended Java to support polymorphism in the style of C++ templates or Ada gener- ics. One project, GJ [BOSW98], adds F-bounded parametric polymorphism [CCH+89] to Java via a homogeneous translation (such that only one class file results from each com- piled source file), and produces bytecode that is compatible with the standard Java Virtual Machine. However while GJ’s simple translation based on erasure allows for maximum interaction with existing Java code, the new parameterized types that it supports do not operate consistently with Java’s semantics for lightweight reflection (i.e., checked type-casts and instanceof operations). We present Rupiah, a language based on features adapted from LOOM [BFP97], a provably type-safe language, and implemented by a translation based on GJ. However its translation differs from GJ’s in that it harnesses Java’s built-in reflection to store infor- mation about parameterized types. The resulting bytecode correctly executes checked cast and instanceof expressions because it has access to the necessary type information at run-time. We also add a ThisType construct, which solves many of the problems that arise when binary methods are mixed with inheritance, and we replace subtyping with a different relation, matching.