FAMILY DERODONTIDAE (Tooth-Necked Fungus Beetles)

Total Page:16

File Type:pdf, Size:1020Kb

FAMILY DERODONTIDAE (Tooth-Necked Fungus Beetles) FAMILY DERODONTIDAE (Tooth-necked fungus beetles) D.E. Bright The family Derodontidae includes four genera and 19 species of small beetles that occur in the temperate parts of both the Northern and Southern Hemispheres. They are rarely encountered in the field and are uncommon in collections. Three genera and eight species are found in Canada and Alaska. With the exception of Laricobius species, members of this family feed as both larvae and adults on various kinds of fungi or the products of fungal metabolism. Peltastica appear to be restricted to fermenting sap flows or to areas under bark where bacterial or fungal fermentation is taking place. Derodontus species feed on the fruiting bodies of a wide range of higher Basidiomycetes. Fresh fruiting bodies are preferred by the beetles, although they have been recorded from rotting mushrooms, "slimy fungus" and "watery fungus". The feeding habits of Laricobius erichsonii have been well documented by Franz (1958). Adults and larvae feed on the pine and spruce aphids in the family Adelgidae. The preferred host of L. erichsonii is the balsam woolly aphid and the species was introduced into eastern Canada in the 1950's for the control of this pest. The other species of Laricobius also feed on other species of Adelgidae. Information on adult and larval morphology, feeding behavior, life cycle, evolution and keys and diagnosis of all genera and species may be found by consulting Lawrence and Hlavac (1979). AK (2); BC (5); AB (1); ON (2); PQ (1); NB (2); NS (3); NF (1) Subfamily PELTASTICINAE Genus PELTASTICA Mannerheim P. tuberculata Mannerheim AK - - BC - - - - - - - - - - Subfamily DERODONTINAE Genus LARICOBIUS Rosenhauer L. erichsonii Rosenhauer+ - - - BC - - - - - NB NS - - NF L. laticollis Fall - - - BC AB - - - - - - - - - L. nigrinus Fender - - - BC - - - - - - - - - - L. rubidus LeConte - - - - - - - ON PQ NB - - - - Genus DERODONTUS LeConte D. esotericus Lawrence - - - - - - - ON - - NS - - - D. maculatus (Melsheimer) - - - - - - - - - - NS - - - D. trisignatus (Mannerheim) AK - - BC - - - - - - - - - - .
Recommended publications
  • Emergence of Laricobius Nigrinus (Fender) (Coleoptera: Derodontidae) in the North Georgia Mountains1
    Emergence of Laricobius nigrinus (Fender) (Coleoptera: Derodontidae) in the North Georgia Mountains1 C.E. Jones2, J.L. Hanula3, and S. K. Braman4 Dept. of Entomology, University of Georgia, 41 3 Biological Sciences Building, Athens, Georgia 30602, USA J. Entomol. Sci. 49(4): 401-412 (October 2014} Abstract Hemlock woolly adelgid, Adelges tsugae An nand, is currently found throughout most of the range of eastern hemlock, Tsuga canadensis (L. ) Carriere. Biological control agents have been released in attempts to control this pest, but how different climates influence the efficacy and survival of these agents has not been studied. One predatory beetle of A. tsugae, Laricobius nigrinus Fender, is native to the Pacific Northwest and, therefore, experiences a much different summer climate in the north Georgia mountains. To better understand survival of this predator as it aestivates in the soil, 5 mesh cages were set up at each of 16 sites with 4 sites located at an elevation below 549 m, 4 sites between 549 m - 732 m, 5 sites between 732 m - 914 m, and 3 sites over 914 m. At each site 30 larvae were placed inside one of the cages during March, April, or May on a bouquet of adelgid infested hemlock twigs, and emergence of adults was monitored in the fall . Of the 1440 larvae placed at the 16 sites, only 4 adult beetles emerged between 06 October 2012 and 05 November 2012. The overall success rate remains unknown, and more research is needed to assess the efficacy of L. nigrinus as a biological control agent in Georgia.
    [Show full text]
  • Behavioral Ecology and Genetics of Potential Natural Enemies of Hemlock Woolly Adelgid Arielle Arsenault University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2013 Behavioral Ecology and Genetics of Potential Natural Enemies of Hemlock Woolly Adelgid Arielle Arsenault University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Recommended Citation Arsenault, Arielle, "Behavioral Ecology and Genetics of Potential Natural Enemies of Hemlock Woolly Adelgid" (2013). Graduate College Dissertations and Theses. 10. https://scholarworks.uvm.edu/graddis/10 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. BEHAVIORAL ECOLOGY AND GENETICS OF POTENTIAL NATURAL ENEMIES OF HEMLOCK WOOLLY ADELGID A Thesis Presented by Arielle L. Arsenault to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Natural Resources October, 2013 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Master of Science, specializing in Natural Resources. Thesis Examination Committee: ____________________________________________Advisor Kimberly F. Wallin, Ph.D. ___________________________________________ Jon D. Erickson, Ph.D. ____________________________________________Chairperson Lori Stevens, Ph.D ____________________________________________Dean, Graduate College Dominico Grasso, Ph.D. June 26, 2013 ABSTRACT Eastern and Carolina hemlock in the eastern United States are experiencing high mortality due to the invasive non-native hemlock woolly adelgid (HWA). The most promising means of control of HWA is the importation of natural enemies from the native range of HWA for classical biological control.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Genome Sequencing of Rhinorhipus Lawrence Exposes an Early Branch
    Kusy et al. Frontiers in Zoology (2018) 15:21 https://doi.org/10.1186/s12983-018-0262-0 RESEARCH Open Access Genome sequencing of Rhinorhipus Lawrence exposes an early branch of the Coleoptera Dominik Kusy1, Michal Motyka1, Carmelo Andujar2, Matej Bocek1, Michal Masek1, Katerina Sklenarova1, Filip Kokas3, Milada Bocakova1, Alfried P. Vogler4,5 and Ladislav Bocak1* Abstract Background: Rhinorhipidae Lawrence, 1988 is an enigmatic beetle family represented by a single species, Rhinorhipus tamborinensis Lawrence, 1988, from Australia, with poorly established affinities near the superfamily Elateroidea (click beetles, soldier beetles and fireflies) or the more inclusive series (infraorder) Elateriformia. Its evolutionary position may inform the basal relationships of the suborder Polyphaga, the largest clade of Coleoptera. Results: We analyzed four densely sampled DNA datasets of major coleopteran lineages for mitogenomes, rRNA genes and single copy nuclear genes. Additionally, genome sequencing was used for incorporation of R. tamborinensis into a set of 4220 orthologs for 24 terminals representing 12 polyphagan superfamilies. Topologies differed to various degrees, but all consistently refute the proposed placement of Rhinorhipidae in Elateroidea and instead indicate either sister relationships with other Elateriformia, frequently together with Nosodendridae, another divergent small family hitherto placed in Derodontoidea, or in an isolated position among the deepest lineages of Polyphaga. The phylogenomic analyses recovered Rhinorhipus in a sister position to all other Elateriformia composed of five superfamilies. Therefore, we erect the new superfamily Rhinorhipoidea Lawrence, 1988, stat. Nov.,with the type-family Rhinorhipidae. The origins of the Rhinorhipidae were dated to the Upper Triassic/Lower Jurassic at the very early phase of polyphagan diversification.
    [Show full text]
  • Biological Control of Hemlock Woolly Adelgid
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGICAL CONTROL OF HEMLOCK WOOLLY ADELGID TECHNICALCONTRIBUTORS: RICHARD REARDON FOREST HEALTH TECHNOLOGY ENTERPRISE TEAM, USDA FOREST SERVICE, MORGANTOWN, WEST VIRGINIA BRAD ONKEN FOREST HEALTH PROTECTION, USDA FOREST SERVICE, MORGANTOWN, WEST VIRGINIA AUTHORS: CAROLE CHEAH THE CONNECTICUT AGRICULTURAL EXPERIMENT STATION MIKE MONTGOMERY NORTHEASTERN RESEARCH STATION SCOTT SALEM VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY BRUCE PARKER, MARGARET SKINNER, SCOTT COSTA UNIVERSITY OF VERMONT FHTET-2004-04 U.S. Department Forest of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in T1995 by the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover Clockwise from top left: adult coccinellids Sasajiscymnus tsugae, Symnus ningshanensis, and Scymnus sinuanodulus, adult derodontid Laricobius nigrinus, hemlock woolly adelgid infected with Verticillium lecanii. For copies of this publication, please contact: Brad Onken Richard Reardon Forest Health Protection Forest Health Technology Enterprise Morgantown, West Virginia Team Morgantown, West Virginia 304-285-1546 304-285-1566 [email protected] [email protected] All images in the publication are available online at http://www.forestryimages.org and http://www.invasive.org Reference numbers for the digital files appear in the figure captions in this publication. The entire publication is available online at http://www.bugwood.org and http://www.fs.fed.us/na/morgantown/fhp/hwa. The U.S.
    [Show full text]
  • (Order: Coleoptera) of Durgapur, West Bengal, India
    Hindawi Publishing Corporation Psyche Volume 2014, Article ID 792746, 6 pages http://dx.doi.org/10.1155/2014/792746 Research Article Diversity and Composition of Beetles (Order: Coleoptera) of Durgapur, West Bengal, India Moitreyee Banerjee Department of Zoology, Durgapur Government College, Jawaharlal Nehru Avenue, Durgapur, Burdwan District, West Bengal 713214, India Correspondence should be addressed to Moitreyee Banerjee; [email protected] Received 31 July 2013; Revised 14 November 2013; Accepted 29 November 2013; Published 30 January 2014 Academic Editor: James C. Nieh Copyright © 2014 Moitreyee Banerjee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A survey of beetle faunal diversity and composition was studied in Durgapur Municipal Corporation, Durgapur, West Bengal, from January to December 2012. Beetles were collected using standard trapping methods from three different sites selected on the basis of their specific habitat differences, identified up to the level of family, and counted monthly. A total of 9 families were reported from the study site. The second site, that is, Site B, showed the highest diversity. It is also noted that the highest diversity wasfound during monsoon in all the three sites. 1. Introduction dead or decaying ones [7]. About 3/4 of beetle species are phytophagous in both the larval and adult stages, living in Coleoptera is an order of insects commonly called beetles. or on plants, wood, fungi, and a variety of stored products, The word “coleoptera” is from the Greek keleos,meaning including cereals, tobacco, and dried fruits.
    [Show full text]
  • Hemlock Woolly Adelgid
    United States Department of Agriculture TECHNOLOGY TRANSFER Non-native Pest BIOLOGY AND CONTROL OF HEMLOCK WOOLLY ADELGID Nathan P. Havill Lígia C. Vieira Scott M. Salom Forest Health Technology FHTET-2014-05 Enterprise Team Revised June 2016 The Forest Health Technology Enterprise Team (FHTET) was created in 1995 by the Deputy Chief for State and Private Forestry, USDA Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Background image: Hemlock mortality, Jason Van Driesche, Bugwood.org Bottom left to right: HWA white ovisacs on eastern hemlock branch , Scott M. Salom, Virginia Tech; Sajiscymus tsugae, Carol Cheah, Bugwood.org; Laricobius osakensis, Ligia C. Vieira, Virginia Tech. CAUTION: PESTICIDES Pesticide Precautionary Statement This publication reports research involving pesticides. It does not contain recommen- dations for their use, nor does it imply that the uses discussed here have been regis- tered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife--if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. In accordance with Federal
    [Show full text]
  • Download Full Article 514.1KB .Pdf File
    Memoirs of the Museum of Victoria 56(2):659-666 (1997) 28 February 1997 https://doi.org/10.24199/j.mmv.1997.56.67 BIODIVERSITY OF NEW ZEALAND BEETLES (INSECTA, COLEOPTERA) J. KLIMASZEWSK.I Manaaki Whenua — Landcare Research, Private Bag 92170, Auckland, New Zealand Present address: BC Research. 3650 Weshrook Mall, Vancouver V6S SLS, Canada Abstract Klimaszewski, J., 1 997. Biodiversity of New Zealand beetles (Insecta: Coleoptera). Memoirs of the Museum of Victoria 56(2): 659-666. Approximately 5235 species are described for New Zealand, including 354 introduced. They belong to 82 families in two suborders, Adephaga and Polyphaga. The New Zealand beetle fauna is distinguished by the absence of many major lineages, a high level of endem- ism. which in many groups is over 90% at the specific level and over 43% at the generic level (e.g.. Staphylinidae), and the radiation of many groups of genera and species. The origins of New Zealand's beetle fauna are still poorly understood. They are likely to be varied, includ- ing Gondwanan elements and elements which arrived here by short and long-distance dispersal recently and in the remote past. The size of the New Zealand beetle fauna is con- sistent with species number/land area relationships in other areas around the world. Introduction Zealand beetles is that of Kuschel (1990), in the suburb of Lynfield, Auckland, in which 982 The beetles are the largest order of organisms, beetle species were recorded in a diverse veg- with over 350 000 described species world- etation including remnant forest, pastureland, wide. and suburban garden.
    [Show full text]
  • Chapter 16. Evaluating Host Range of Laricobius Nigrinus for Introduction Into the Eastern United States for Biological Control of Hemlock Woolly Adelgid
    ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS _________________________________ CHAPTER 16. EVALUATING HOST RANGE OF LARICOBIUS NIGRINUS FOR INTRODUCTION INTO THE EASTERN UNITED STATES FOR BIOLOGICAL CONTROL OF HEMLOCK WOOLLY ADELGID G. Zilahi-Balogh Agriculture & Agri-Food Canada, Harrow, Ontario, Canada [email protected] HEMLOCK WOOLLY ADELGID IN NORTH AMERICA The hemlock woolly adelgid (HWA), Adelges tsugae Annand (Homoptera: Adelgidae), is a serious threat to hemlock landscape and forest stands in the eastern United States (McClure, 1996). Eastern hemlock (Tsuga canadensis [L.] Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.) are very susceptible to HWA attack, and infested trees have died in as little as four years (McClure, 1991). DISTRIBUTION OF HWA HWA is believed to have originated in Asia (McClure, 1987), and was first observed in North America in the Pacific Northwest in the early 1920s, where Annand (1924) described it from specimens collected on western hemlock, Tsuga heterophylla (Raf.) Sargent, in Oregon. An earlier description in 1922 identified the species as Chermes funitectus Dreyfus, also from west- ern hemlock in Vancouver, British Columbia (Annand, 1928). Annand (1928) reported that the two species were the same. HWA is exotic to eastern North America (McClure, 1987). First collected in the eastern United States in Virginia in 1951 in an ornamental setting (Stoetzel, 2002), it has spread to forests where it currently occurs in parts of 16 states along the eastern seaboard from North Carolina to New England (USDA FS, 2004). The main front of the HWA infestation is ad- vancing at approximately 25 km per year (McClure, 2001). There are nine recognized species of hemlock (Farjon, 1990).
    [Show full text]
  • Coleoptera : Buprestidae
    FEVISION OF THE HIGHER CATEGORIES OF STIGMODERINI (COLEæTERA : BUPRESTIDAE) JENNIFER ANNE GARDNER B. Sc. (Hons) (Aderaide) Department of ZoologY The University of Adelaide A thesis submitted for the degree of Doctor of PhilosoPhY FEBRUARY 1986 L tn¡o o-, eAP o( ej - 4 -{ BI F s rl T}tE RI],GI.STRY Mr. I-.L. Carrnan Asslstant. ReglsErar- (Sc Lence) Tel 228 5673 ILC;DßA;DPl.7 7l,Lay, l9{Jli )ls. Jennif er A. Gardner, DEPARTMT,NT O}' ZOOLOCY. Dear ]"ls . Gardner, the degree I am oleased to lnform you that you quallfl-ed for the award of of Doctor of Philosophy for your tht.sis entirlecl "Revision of ttre lligher õ;.;fS;i;"-or siig*oà.rini (ôoleoptera ; Bupresttrlae)" on 29 April- I986' Copi¿es of che reports are enclosecl for your lnformaËion. "*"rln"r"r lìfinor corrections are reqttirecl to be ma,le to yotlr Ehesis, therefore would you take up thls lnairer with your supervi-sor as aoon as posslble' In fhe nor$al course of events fhe degree will be conferred at the- annual commemoration ceremony to be helcl fn Aprfl/May 1987 ancl I should be grateful lf you rvould comnlete the enclosed form of appllcatlon for adrnfsslon to a hfgher degree and return it to me as soorì as possible ' I any shoulcl point out, however, that the degree cannot be conferred untll outstanàing tlnion or Library fees have been patd' ltith respect to your application for tìre withho-l ding of ot:rmissj-on for photocopying or ior.t, bof-h the t'acrrlty of Sclence a'cl Lhe B,ard of Research Studles consldereC that your best, rJeferrce against Ëhe posslbí-lity ot plagiarlsnr
    [Show full text]
  • Observations on the Cave-Associated Beetles (Coleoptera) of Nova Scotia, Canada Max Moseley1
    International Journal of Speleology 38 (2) 163-172 Bologna (Italy) July 2009 Available online at www.ijs.speleo.it International Journal of Speleology Official Journal of Union Internationale de Spéléologie Observations on the Cave-Associated Beetles (Coleoptera) of Nova Scotia, Canada Max Moseley1 Abstract: Moseley M. 2009. Observations on the Cave-Associated Beetles (Coleoptera) of Nova Scotia, Canada. International Journal of Speleology, 38(2), 163-172. Bologna (Italy). ISSN 0392-6672. The cave-associated invertebrates of Nova Scotia constitute a fauna at a very early stage of post-glacial recolonization. The Coleoptera are characterized by low species diversity. A staphylinid Quedius spelaeus spelaeus, a predator, is the only regularly encountered beetle. Ten other terrestrial species registered from cave environments in the province are collected infrequently. They include three other rove-beetles: Brathinus nitidus, Gennadota canadensis and Atheta annexa. The latter two together with Catops gratiosus (Leiodidae) constitute a small group of cave-associated beetles found in decompositional situations. Quedius s. spelaeus and a small suite of other guanophiles live in accumulations of porcupine dung: Agolinus leopardus (Scarabaeidae), Corticaria serrata (Latrididae), and Acrotrichis castanea (Ptilidae). Two adventive weevils Otiorhynchus ligneus and Barypeithes pellucidus (Curculionidae) collected in shallow cave passages are seasonal transients; Dermestes lardarius (Dermestidae), recorded from one cave, was probably an accidental (stray). Five of the terrestrial beetles are adventive Palaearctic species. Aquatic beetles are collected infrequently. Four taxa have been recorded: Agabus larsoni (Dytiscidae) may be habitual in regional caves; another Agabus sp. (probably semivittatus), Dytiscus sp. (Dytiscidae), and Crenitis digesta (Hydrophilidae) are accidentals. The distribution and ecology of recorded species are discussed, and attention is drawn to the association of beetles found in a Nova Scotia “ice cave”.
    [Show full text]
  • First Fossil Tooth-Necked Fungus Beetle (Coleoptera: Derodontidae): Juropeltastica Sinica Gen
    Eur. J. Entomol. 111(2): 299–302, 2014 doi: 10.14411/eje.2014.034 ISSN 1210-5759 (print), 1802-8829 (online) First fossil tooth-necked fungus beetle (Coleoptera: Derodontidae): Juropeltastica sinica gen. n. sp. n. from the Middle Jurassic of China CHENYANG CAI 1, 2, John F. LawrENCE 3, AdAm Ślipiński 3 and diying HUANG 1* 1 state key laboratory of palaeobiology and stratigraphy, Nanjing institute of Geology and palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China; e-mails: [email protected], [email protected] 2 Graduate School, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China 3Australian National Insect Collection, CSIRO Ecosystem Sciences, GPO Box 1700, Canberra ACT 2601, Australia; e-mails: [email protected], [email protected] Key words. Coleoptera, Derodontidae, Juropeltastica gen. n., fossil, Daohugou beds, Middle Jurassic, China Abstract. The first fossil tooth-necked fungus beetle, Juropeltastica sinica gen. n. sp. n., is described and illustrated based on a single impression fossil from the Middle Jurassic Daohugou beds (ca. 165 Ma) of northeastern China. it represents the first definitive fossil be- longing to the extant family Derodontidae. Juropeltastica is placed in Derodontidae based on its overall body shape and size, head with complex systems of tubercles and grooves, pronotum with dentate lateral carinae, open mesocoxal cavities bordered by mesepimeron and metanepisternum, excavate metacoxae, and 5-segmented abdomen. The occurrence of a reliable derodontid fossil from 165 mil- lion years ago places Derodontidae among the small but growing number of beetle families of known Middle Jurassic age, which is important in the dating of phylogenetic trees.
    [Show full text]