REDUCE User's Manual

Total Page:16

File Type:pdf, Size:1020Kb

REDUCE User's Manual REDUCE User’s Manual Version 3.8 Anthony C. Hearn Santa Monica, CA, USA Email: [email protected] February 2004 Copyright c 2004 Anthony C. Hearn. All rights reserved. Registered system holders may reproduce all or any part of this publication for internal purposes, provided that the source of the material is clearly acknowledged, and the copyright notice is retained. Contents Abstract 11 1 Introductory Information 15 2 Structure of Programs 19 2.1 The REDUCE Standard Character Set............... 19 2.2 Numbers............................... 19 2.3 Identifiers.............................. 21 2.4 Variables.............................. 22 2.5 Strings................................ 23 2.6 Comments.............................. 23 2.7 Operators.............................. 24 3 Expressions 27 3.1 Scalar Expressions......................... 27 3.2 Integer Expressions......................... 28 3.3 Boolean Expressions........................ 29 3.4 Equations.............................. 30 3.5 Proper Statements as Expressions................. 31 4 Lists 33 4.1 Operations on Lists......................... 33 4.1.1 LIST............................ 34 4.1.2 FIRST............................ 34 1 2 CONTENTS 4.1.3 SECOND.......................... 34 4.1.4 THIRD........................... 34 4.1.5 REST............................ 34 4.1.6 : (Cons) Operator...................... 34 4.1.7 APPEND.......................... 34 4.1.8 REVERSE......................... 35 4.1.9 List Arguments of Other Operators............ 35 4.1.10 Caveats and Examples................... 35 5 Statements 37 5.1 Assignment Statements....................... 38 5.1.1 Set Statement........................ 38 5.2 Group Statements.......................... 39 5.3 Conditional Statements....................... 39 5.4 FOR Statements........................... 40 5.5 WHILE . DO........................... 42 5.6 REPEAT . UNTIL......................... 43 5.7 Compound Statements....................... 43 5.7.1 Compound Statements with GO TO............ 45 5.7.2 Labels and GO TO Statements............... 45 5.7.3 RETURN Statements.................... 46 6 Commands and Declarations 49 6.1 Array Declarations......................... 49 6.2 Mode Handling Declarations.................... 50 6.3 END................................. 51 6.4 BYE Command........................... 51 6.5 SHOWTIME Command...................... 51 6.6 DEFINE Command......................... 51 7 Built-in Prefix Operators 53 7.1 Numerical Operators........................ 53 CONTENTS 3 7.1.1 ABS............................. 53 7.1.2 CEILING.......................... 54 7.1.3 CONJ............................ 54 7.1.4 FACTORIAL........................ 54 7.1.5 FIX............................. 54 7.1.6 FLOOR........................... 55 7.1.7 IMPART.......................... 55 7.1.8 MAX/MIN......................... 55 7.1.9 NEXTPRIME........................ 55 7.1.10 RANDOM......................... 56 7.1.11 RANDOM NEW SEED.................. 56 7.1.12 REPART.......................... 56 7.1.13 ROUND.......................... 57 7.1.14 SIGN............................ 57 7.2 Mathematical Functions....................... 57 7.3 DF Operator............................. 61 7.3.1 Adding Differentiation Rules................ 61 7.4 INT Operator............................ 62 7.4.1 Options........................... 63 7.4.2 Advanced Use....................... 63 7.4.3 References......................... 63 7.5 LENGTH Operator......................... 64 7.6 MAP Operator........................... 64 7.7 MKID Operator........................... 65 7.8 PF Operator............................. 66 7.9 SELECT Operator......................... 67 7.10 SOLVE Operator.......................... 68 7.10.1 Handling of Undetermined Solutions........... 69 7.10.2 Solutions of Equations Involving Cubics and Quartics.. 71 7.10.3 Other Options........................ 73 4 CONTENTS 7.10.4 Parameters and Variable Dependency........... 74 7.11 Even and Odd Operators...................... 78 7.12 Linear Operators.......................... 78 7.13 Non-Commuting Operators..................... 79 7.14 Symmetric and Antisymmetric Operators............. 80 7.15 Declaring New Prefix Operators.................. 80 7.16 Declaring New Infix Operators................... 81 7.17 Creating/Removing Variable Dependency............. 82 8 Display and Structuring of Expressions 83 8.1 Kernels............................... 83 8.2 The Expression Workspace..................... 84 8.3 Output of Expressions........................ 85 8.3.1 LINELENGTH Operator.................. 86 8.3.2 Output Declarations.................... 86 8.3.3 Output Control Switches.................. 87 8.3.4 WRITE Command..................... 91 8.3.5 Suppression of Zeros.................... 93 8.3.6 FORTRAN Style Output Of Expressions......... 93 8.3.7 Saving Expressions for Later Use as Input......... 96 8.3.8 Displaying Expression Structure.............. 96 8.4 Changing the Internal Order of Variables.............. 99 8.5 Obtaining Parts of Algebraic Expressions............. 99 8.5.1 COEFF Operator...................... 99 8.5.2 COEFFN Operator..................... 100 8.5.3 PART Operator....................... 100 8.5.4 Substituting for Parts of Expressions............ 102 9 Polynomials and Rationals 103 9.1 Controlling the Expansion of Expressions............. 104 9.2 Factorization of Polynomials.................... 104 CONTENTS 5 9.3 Cancellation of Common Factors.................. 106 9.3.1 Determining the GCD of Two Polynomials........ 107 9.4 Working with Least Common Multiples.............. 108 9.5 Controlling Use of Common Denominators............ 108 9.6 REMAINDER Operator...................... 108 9.7 RESULTANT Operator....................... 109 9.8 DECOMPOSE Operator...................... 110 9.9 INTERPOL operator........................ 111 9.10 Obtaining Parts of Polynomials and Rationals........... 111 9.10.1 DEG Operator....................... 111 9.10.2 DEN Operator....................... 112 9.10.3 LCOF Operator....................... 112 9.10.4 LPOWER Operator..................... 113 9.10.5 LTERM Operator...................... 113 9.10.6 MAINVAR Operator.................... 113 9.10.7 NUM Operator....................... 114 9.10.8 REDUCT Operator..................... 114 9.11 Polynomial Coefficient Arithmetic................. 115 9.11.1 Rational Coefficients in Polynomials............ 115 9.11.2 Real Coefficients in Polynomials.............. 115 9.11.3 Modular Number Coefficients in Polynomials....... 117 9.11.4 Complex Number Coefficients in Polynomials...... 117 10 Substitution Commands 119 10.1 SUB Operator............................ 119 10.2 LET Rules.............................. 120 10.2.1 FOR ALL . LET..................... 122 10.2.2 FOR ALL . SUCH THAT . LET............ 123 10.2.3 Removing Assignments and Substitution Rules...... 124 10.2.4 Overlapping LET Rules.................. 124 10.2.5 Substitutions for General Expressions........... 125 6 CONTENTS 10.3 Rule Lists.............................. 127 10.4 Asymptotic Commands....................... 133 11 File Handling Commands 135 11.1 IN Command............................ 135 11.2 OUT Command........................... 136 11.3 SHUT Command.......................... 136 12 Commands for Interactive Use 137 12.1 Referencing Previous Results.................... 137 12.2 Interactive Editing.......................... 138 12.3 Interactive File Control....................... 139 13 Matrix Calculations 141 13.1 MAT Operator............................ 141 13.2 Matrix Variables........................... 142 13.3 Matrix Expressions......................... 142 13.4 Operators with Matrix Arguments................. 143 13.4.1 DET Operator........................ 143 13.4.2 MATEIGEN Operator................... 144 13.4.3 TP Operator......................... 145 13.4.4 Trace Operator....................... 145 13.4.5 Matrix Cofactors...................... 145 13.4.6 NULLSPACE Operator................... 146 13.4.7 RANK Operator...................... 147 13.5 Matrix Assignments......................... 147 13.6 Evaluating Matrix Elements.................... 147 14 Procedures 149 14.1 Procedure Heading......................... 150 14.2 Procedure Body........................... 151 14.3 Using LET Inside Procedures.................... 153 CONTENTS 7 14.4 LET Rules as Procedures...................... 154 15 User Contributed Packages 157 15.1 ALGINT: Integration of square roots................ 157 15.2 APPLYSYM: Infinitesimal symmetries of differential equations. 158 15.3 ARNUM: An algebraic number package.............. 158 15.4 ASSIST: Useful utilities for various applications.......... 158 15.5 AVECTOR: A vector algebra and calculus package........ 159 15.6 BOOLEAN: A package for boolean algebra............ 159 15.7 CALI: A package for computational commutative algebra..... 159 15.8 CAMAL: Calculations in celestial mechanics........... 159 15.9 CHANGEVR: Change of Independent Variable(s) in DEs..... 160 15.10COMPACT: Package for compacting expressions......... 160 15.11CRACK: Solving overdetermined systems of PDEs or ODEs... 160 15.12CVIT: Fast calculation of Dirac gamma matrix traces....... 161 15.13DEFINT: A definite integration interface.............. 161 15.14DESIR: Differential linear homogeneous equation solutions in the neighborhood of irregular and regular singular points....... 161 15.15DFPART: Derivatives of generic functions............. 161 15.16DUMMY: Canonical form of expressions with dummy variables.
Recommended publications
  • The Sagemanifolds Project
    Tensor calculus with free softwares: the SageManifolds project Eric´ Gourgoulhon1, Micha l Bejger2 1Laboratoire Univers et Th´eories (LUTH) CNRS / Observatoire de Paris / Universit´eParis Diderot 92190 Meudon, France http://luth.obspm.fr/~luthier/gourgoulhon/ 2Centrum Astronomiczne im. M. Kopernika (CAMK) Warsaw, Poland http://users.camk.edu.pl/bejger/ Encuentros Relativistas Espa~noles2014 Valencia 1-5 September 2014 Eric´ Gourgoulhon, Micha l Bejger (LUTH, CAMK) SageManifolds ERE2014, Valencia, 2 Sept. 2014 1 / 44 Outline 1 Differential geometry and tensor calculus on a computer 2 Sage: a free mathematics software 3 The SageManifolds project 4 SageManifolds at work: the Mars-Simon tensor example 5 Conclusion and perspectives Eric´ Gourgoulhon, Micha l Bejger (LUTH, CAMK) SageManifolds ERE2014, Valencia, 2 Sept. 2014 2 / 44 Differential geometry and tensor calculus on a computer Outline 1 Differential geometry and tensor calculus on a computer 2 Sage: a free mathematics software 3 The SageManifolds project 4 SageManifolds at work: the Mars-Simon tensor example 5 Conclusion and perspectives Eric´ Gourgoulhon, Micha l Bejger (LUTH, CAMK) SageManifolds ERE2014, Valencia, 2 Sept. 2014 3 / 44 In 1969, during his PhD under Pirani supervision at King's College, Ray d'Inverno wrote ALAM (Atlas Lisp Algebraic Manipulator) and used it to compute the Riemann tensor of Bondi metric. The original calculations took Bondi and his collaborators 6 months to go. The computation with ALAM took 4 minutes and yield to the discovery of 6 errors in the original paper [J.E.F. Skea, Applications of SHEEP (1994)] In the early 1970's, ALAM was rewritten in the LISP programming language, thereby becoming machine independent and renamed LAM The descendant of LAM, called SHEEP (!), was initiated in 1977 by Inge Frick Since then, many softwares for tensor calculus have been developed..
    [Show full text]
  • Using Macaulay2 Effectively in Practice
    Using Macaulay2 effectively in practice Mike Stillman ([email protected]) Department of Mathematics Cornell 22 July 2019 / IMA Sage/M2 Macaulay2: at a glance Project started in 1993, Dan Grayson and Mike Stillman. Open source. Key computations: Gr¨obnerbases, free resolutions, Hilbert functions and applications of these. Rings, Modules and Chain Complexes are first class objects. Language which is comfortable for mathematicians, yet powerful, expressive, and fun to program in. Now a community project Journal of Software for Algebra and Geometry (started in 2009. Now we handle: Macaulay2, Singular, Gap, Cocoa) (original editors: Greg Smith, Amelia Taylor). Strong community: including about 2 workshops per year. User contributed packages (about 200 so far). Each has doc and tests, is tested every night, and is distributed with M2. Lots of activity Over 2000 math papers refer to Macaulay2. History: 1976-1978 (My undergrad years at Urbana) E. Graham Evans: asked me to write a program to compute syzygies, from Hilbert's algorithm from 1890. Really didn't work on computers of the day (probably might still be an issue!). Instead: Did computation degree by degree, no finishing condition. Used Buchsbaum-Eisenbud \What makes a complex exact" (by hand!) to see if the resulting complex was exact. Winfried Bruns was there too. Very exciting time. History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) I tried to do \real mathematics" but Dave Bayer (basically) rediscovered Groebner bases, and saw that they gave an algorithm for computing all syzygies. I got excited, dropped what I was doing, and we programmed (in Pascal), in less than one week, the first version of what would be Macaulay.
    [Show full text]
  • Singular Value Decomposition and Its Numerical Computations
    Singular Value Decomposition and its numerical computations Wen Zhang, Anastasios Arvanitis and Asif Al-Rasheed ABSTRACT The Singular Value Decomposition (SVD) is widely used in many engineering fields. Due to the important role that the SVD plays in real-time computations, we try to study its numerical characteristics and implement the numerical methods for calculating it. Generally speaking, there are two approaches to get the SVD of a matrix, i.e., direct method and indirect method. The first one is to transform the original matrix to a bidiagonal matrix and then compute the SVD of this resulting matrix. The second method is to obtain the SVD through the eigen pairs of another square matrix. In this project, we implement these two kinds of methods and develop the combined methods for computing the SVD. Finally we compare these methods with the built-in function in Matlab (svd) regarding timings and accuracy. 1. INTRODUCTION The singular value decomposition is a factorization of a real or complex matrix and it is used in many applications. Let A be a real or a complex matrix with m by n dimension. Then the SVD of A is: where is an m by m orthogonal matrix, Σ is an m by n rectangular diagonal matrix and is the transpose of n ä n matrix. The diagonal entries of Σ are known as the singular values of A. The m columns of U and the n columns of V are called the left singular vectors and right singular vectors of A, respectively. Both U and V are orthogonal matrices.
    [Show full text]
  • An Alternative Algorithm for Computing the Betti Table of a Monomial Ideal 3
    AN ALTERNATIVE ALGORITHM FOR COMPUTING THE BETTI TABLE OF A MONOMIAL IDEAL MARIA-LAURA TORRENTE AND MATTEO VARBARO Abstract. In this paper we develop a new technique to compute the Betti table of a monomial ideal. We present a prototype implementation of the resulting algorithm and we perform numerical experiments suggesting a very promising efficiency. On the way of describing the method, we also prove new constraints on the shape of the possible Betti tables of a monomial ideal. 1. Introduction Since many years syzygies, and more generally free resolutions, are central in purely theo- retical aspects of algebraic geometry; more recently, after the connection between algebra and statistics have been initiated by Diaconis and Sturmfels in [DS98], free resolutions have also become an important tool in statistics (for instance, see [D11, SW09]). As a consequence, it is fundamental to have efficient algorithms to compute them. The usual approach uses Gr¨obner bases and exploits a result of Schreyer (for more details see [Sc80, Sc91] or [Ei95, Chapter 15, Section 5]). The packages for free resolutions of the most used computer algebra systems, like [Macaulay2, Singular, CoCoA], are based on these techniques. In this paper, we introduce a new algorithmic method to compute the minimal graded free resolution of any finitely generated graded module over a polynomial ring such that some (possibly non- minimal) graded free resolution is known a priori. We describe this method and we present the resulting algorithm in the case of monomial ideals in a polynomial ring, in which situ- ation we always have a starting nonminimal graded free resolution.
    [Show full text]
  • Computations in Algebraic Geometry with Macaulay 2
    Computations in algebraic geometry with Macaulay 2 Editors: D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels Preface Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re- cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith- mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv- ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi- mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all.
    [Show full text]
  • Singular in Sage L-38 22November2019 1/40 Computing with Polynomials in Singular
    Computing with Polynomials in Singular 1 Polynomials, Resultants, and Factorization computer algebra for polynomial computations resultants to eliminate variables 2 Gröbner Bases and Multiplication Matrices ideals of polynomials and Gröbner bases normal forms and multiplication matrices multiplicity as the dimension of the local quotient ring 3 Formulas for the 4-bar Coupler Point formulation of the problem processing a Gröbner basis MCS 507 Lecture 38 Mathematical, Statistical and Scientific Software Jan Verschelde, 22 November 2019 Scientific Software (MCS 507) Singular in Sage L-38 22November2019 1/40 Computing with Polynomials in Singular 1 Polynomials, Resultants, and Factorization computer algebra for polynomial computations resultants to eliminate variables 2 Gröbner Bases and Multiplication Matrices ideals of polynomials and Gröbner bases normal forms and multiplication matrices multiplicity as the dimension of the local quotient ring 3 Formulas for the 4-bar Coupler Point formulation of the problem processing a Gröbner basis Scientific Software (MCS 507) Singular in Sage L-38 22November2019 2/40 Singular Singular is a computer algebra system for polynomial computations, with special emphasis on commutative and non-commutative algebra, algebraic geometry, and singularity theory, under the GNU General Public License. Singular’s core algorithms handle polynomial factorization and resultants characteristic sets and numerical root finding Gröbner, standard bases, and free resolutions. Its development is directed by Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann, within the Dept. of Mathematics at the University of Kaiserslautern. Scientific Software (MCS 507) Singular in Sage L-38 22November2019 3/40 Singular in Sage Advanced algorithms are contained in more than 90 libraries, written in a C-like programming language.
    [Show full text]
  • What Can Computer Algebraic Geometry Do Today?
    What can computer Algebraic Geometry do today? Gregory G. Smith Wolfram Decker Mike Stillman 14 July 2015 Essential Questions ̭ What can be computed? ̭ What software is currently available? ̭ What would you like to compute? ̭ How should software advance your research? Basic Mathematical Types ̭ Polynomial Rings, Ideals, Modules, ̭ Varieties (affine, projective, toric, abstract), ̭ Sheaves, Divisors, Intersection Rings, ̭ Maps, Chain Complexes, Homology, ̭ Polyhedra, Graphs, Matroids, ̯ Established Geometric Tools ̭ Elimination, Blowups, Normalization, ̭ Rational maps, Working with divisors, ̭ Components, Parametrizing curves, ̭ Sheaf Cohomology, ঠ-modules, ̯ Emerging Geometric Tools ̭ Classification of singularities, ̭ Numerical algebraic geometry, ̭ ैक़௴Ь, Derived equivalences, ̭ Deformation theory,Positivity, ̯ Some Geometric Successes ̭ GEOGRAPHY OF SURFACES: exhibiting surfaces with given invariants ̭ BOIJ-SÖDERBERG: examples lead to new conjectures and theorems ̭ MODULI SPACES: computer aided proofs of unirationality Some Existing Software ̭ GAP,Macaulay2, SINGULAR, ̭ CoCoA, Magma, Sage, PARI, RISA/ASIR, ̭ Gfan, Polymake, Normaliz, 4ti2, ̭ Bertini, PHCpack, Schubert, Bergman, an idiosyncratic and incomplete list Effective Software ̭ USEABLE: documented examples ̭ MAINTAINABLE: includes tests, part of a larger distribution ̭ PUBLISHABLE: Journal of Software for Algebra and Geometry; www.j-sag.org ̭ CITATIONS: reference software Recent Developments in Singular Wolfram Decker Janko B¨ohm, Hans Sch¨onemann, Mathias Schulze Mohamed Barakat TU Kaiserslautern July 14, 2015 Wolfram Decker (TU-KL) Recent Developments in Singular July 14, 2015 1 / 24 commutative and non-commutative algebra, singularity theory, and with packages for convex and tropical geometry. It is free and open-source under the GNU General Public Licence.
    [Show full text]
  • The Pretzel User Manual
    The PretzelBook second edition Felix G¨artner June 11, 1998 2 Contents 1 Introduction 5 1.1 Do Prettyprinting the Pretzel Way . 5 1.2 History . 6 1.3 Acknowledgements . 6 1.4 Changes to second Edition . 6 2 Using Pretzel 7 2.1 Getting Started . 7 2.1.1 A first Example . 7 2.1.2 Running Pretzel . 9 2.1.3 Using Pretzel Output . 9 2.2 Carrying On . 10 2.2.1 The Two Input Files . 10 2.2.2 Formatted Tokens . 10 2.2.3 Regular Expressions . 10 2.2.4 Formatted Grammar . 11 2.2.5 Prettyprinting with Format Instructions . 12 2.2.6 Formatting Instructions . 13 2.3 Writing Prettyprinting Grammars . 16 2.3.1 Modifying an existing grammar . 17 2.3.2 Writing a new Grammar from Scratch . 17 2.3.3 Context Free versus Context Sensitive . 18 2.3.4 Available Grammars . 19 2.3.5 Debugging Prettyprinting Grammars . 19 2.3.6 Experiences . 21 3 Pretzel Hacking 23 3.1 Adding C Code to the Rules . 23 3.1.1 Example for Tokens . 23 3.1.2 Example for Grammars . 24 3.1.3 Summary . 25 3.1.4 Tips and Tricks . 26 3.2 The Pretzel Interface . 26 3.2.1 The Prettyprinting Scanner . 27 3.2.2 The Prettyprinting Parser . 28 3.2.3 Example . 29 3.3 Building a Pretzel prettyprinter by Hand . 30 3.4 Obtaining a Pretzel Prettyprinting Module . 30 3.4.1 The Prettyprinting Scanner . 30 3.4.2 The Prettyprinting Parser . 31 3.5 Multiple Pretzel Modules in the same Program .
    [Show full text]
  • Sage Tutorial (Pdf)
    Sage Tutorial Release 9.4 The Sage Development Team Aug 24, 2021 CONTENTS 1 Introduction 3 1.1 Installation................................................4 1.2 Ways to Use Sage.............................................4 1.3 Longterm Goals for Sage.........................................5 2 A Guided Tour 7 2.1 Assignment, Equality, and Arithmetic..................................7 2.2 Getting Help...............................................9 2.3 Functions, Indentation, and Counting.................................. 10 2.4 Basic Algebra and Calculus....................................... 14 2.5 Plotting.................................................. 20 2.6 Some Common Issues with Functions.................................. 23 2.7 Basic Rings................................................ 26 2.8 Linear Algebra.............................................. 28 2.9 Polynomials............................................... 32 2.10 Parents, Conversion and Coercion.................................... 36 2.11 Finite Groups, Abelian Groups...................................... 42 2.12 Number Theory............................................. 43 2.13 Some More Advanced Mathematics................................... 46 3 The Interactive Shell 55 3.1 Your Sage Session............................................ 55 3.2 Logging Input and Output........................................ 57 3.3 Paste Ignores Prompts.......................................... 58 3.4 Timing Commands............................................ 58 3.5 Other IPython
    [Show full text]
  • Prologue: General Remarks on Computer Algebra Systems
    Cambridge University Press 978-1-107-61253-2 - A First Course in Computational Algebraic Geometry Wolfram Decker and Gerhard Pfister Excerpt More information Prologue: General Remarks on Computer Algebra Systems Computer algebra algorithms allow us to compute in, and with, a multitude of mathematical structures. Accordingly, there is a large number of computer algebra systems suiting different needs, ranging from the general to the special purpose. Some well-known examples of the former are commercial, whereas many of the special purpose systems are open-source and can be downloaded from the internet for free. General purpose systems aim at providing basic functionality for a variety of different application areas. In addition to tools for symbolic computation, they usually offer tools for numerical computation and for visualization. Example P.1 MAPLE is a commercial general purpose system. To show a few of its commands at work, we start with examples from calculus, namely definite and indefinite integration: > int(sin(x), x=0..Pi); 2 > int(x/(x^2-1), x); 1/2 ln(x - 1) + 1/2 ln(x + 1) For linear algebra applications, we first load the corresponding package. Then we demonstrate how to perform Gaussian elimination and to compute eigen- values. with(LinearAlgebra); A := Matrix([[2, 1, 0], [1, 2, 1], [0, 1, 2]]); ⎡ ⎤ 210 ⎢ ⎥ ⎢ ⎥ ⎣ 121⎦ 012 GaussianElimination(A); 1 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-61253-2 - A First Course in Computational Algebraic Geometry Wolfram Decker and Gerhard Pfister Excerpt More information 2 Prologue: General Remarks on Computer Algebra Systems ⎡ ⎤ 21 0 ⎢ ⎥ ⎢ ⎥ ⎣ 03/21⎦ 004/3 Eigenvalues(A); ⎡ ⎤ 2 ⎢ √ ⎥ ⎢ ⎥ ⎣ 2 − 2 ⎦ √ 2 + 2 Next, we give an example of solving numerically1: > fsolve(2*x^5-11*x^4-7*x^3+12*x^2-4*x = 0); -1.334383488, 0., 5.929222024 Finally, we show one of the graphic functions at work: > plot3d(x*exp(-x^2-y^2),x = -2 .
    [Show full text]
  • CME292: Advanced MATLAB for Scientific Computing
    CME292: Advanced MATLAB for Scientific Computing Homework #2 NLA & Opt Due: Tuesday, April 28, 2015 Instructions This problem set will be combined with Homework #3. For this combined problem set, 2 out of the 6 problems are required. You are free to choose the problems you complete. Before completing problem set, please see HomeworkInstructions on Coursework for general homework instructions, grading policy, and number of required problems per problem set. Problem 1 A matrix A P Rmˆn can be compressed using the low-rank approximation property of the SVD. The approximation algorithm is given in Algorithm1. Algorithm 1 Low-Rank Approximation using SVD Input: A P Rmˆn of rank r and approximation rank k (k ¤ r) mˆn Output: Ak P R , optimal rank k approximation to A 1: Compute (thin) SVD of A “ UΣVT , where U P Rmˆr, Σ P Rrˆr, V P Rnˆr T 2: Ak “ Up:; 1 : kqΣp1 : k; 1 : kqVp:; 1 : kq Notice the low-rank approximation, Ak, and the original matrix, A, are the same size. To actually achieve compression, the truncated singular factors, Up:; 1 : kq P Rmˆk, Σp1 : k; 1 : kq P Rkˆk, Vp:; 1 : kq P Rnˆk, should be stored. As Σ is diagonal, the required storage is pm`n`1qk doubles. The original matrix requires mn storing mn doubles. Therefore, the compression is useful only if k ă m`n`1 . Recall from lecture that the SVD is among the most expensive matrix factorizations in numerical linear algebra. Many SVD approximations have been developed; a particularly interesting one from [1] is given in Algorithm2.
    [Show full text]
  • The Reesalgebra Package in Macaulay2
    Journal of Software for Algebra and Geometry The ReesAlgebra package in Macaulay2 DAVID EISENBUD vol 8 2018 JSAG 8 (2018), 49–60 The Journal of Software for dx.doi.org/10.2140/jsag.2018.8.49 Algebra and Geometry The ReesAlgebra package in Macaulay2 DAVID EISENBUD ABSTRACT: This note introduces Rees algebras and some of their uses, with illustrations from version 2.2 of the Macaulay2 package ReesAlgebra.m2. INTRODUCTION. A central construction in modern commutative algebra starts from an ideal I in a commutative ring R, and produces the Rees algebra R.I / VD R ⊕ I ⊕ I 2 ⊕ I 3 ⊕ · · · D∼ RTI tU ⊂ RTtU; where RTtU denotes the polynomial algebra in one variable t over R. For basics on Rees algebras, see[Vasconcelos 1994] and[Swanson and Huneke 2006], and for some other research, see[Eisenbud and Ulrich 2018; Kustin and Ulrich 1992; Ulrich 1994], and[Valabrega and Valla 1978]. From the point of view of algebraic geometry, the Rees algebra R.I / is a homo- geneous coordinate ring for the graph of a rational map whose total space is the blowup of Spec R along the scheme defined by I. (In fact, the “Rees algebra” is sometimes called the “blowup algebra”.) Rees algebras were first studied in the algebraic context by David Rees, in the now-famous paper[Rees 1958]. Actually, Rees mainly studied the ring RTI t; t−1U, now also called the extended Rees algebra of I. Mike Stillman and I wrote a Rees algebra script for Macaulay classic. It was aug- mented, and made into the[Macaulay2] package ReesAlgebra.m2 around 2002, to study a generalization of Rees algebras to modules described in[Eisenbud et al.
    [Show full text]