Building Nanostructured Polystyrene Latex Beads Covered
Total Page:16
File Type:pdf, Size:1020Kb
BUILDING NANOSTRUCTURED POLYSTYRENE LATEX BEADS COVERED WITH POLYOXOMETALATE CLUSTERS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Xinyue Chen May, 2015 BUILDING NANOSTRUCTURED POLYSTYRENE LATEX BEADS COVERED WITH POLYOXOMETALATE CLUSTERS Xinyue Chen Thesis Approved: Accepted: ________________________________ ________________________________ Advisor Dean of the College Dr. Tianbo Liu Dr. Eric J. Amis ________________________________ ________________________________ Faculty Reader Interim Dean of the Graduate School Dr. Mesfin Tsige Dr. Rex Ramsier ________________________________ ________________________________ Department Chair Date Dr. Coleen Pugh ii ABSTRACT Polyoxometalates (POMs) are a class of metal oxide frameworks, whose structures, morphologies, and elecrionic properties can be designed and tuned to meet with different demands.1 POM-organic hybrids are usually made by linking organic part onto the active site of POMs. They have been widely applied in the field of catalysis, electronics, medicine and biology because they have some extraordinary properties.2 As far as making POMs into catalysts, there are some problems: 1) poor processability and recyclability for homogenous catalyst; 2) low efficiency for the heterogeneous catalyst.3 In this work, we developed a new way to fabricate POM based latex particles via emulsion polymerization. These nanoparticles are formed with core-shell structure with polystyrene as core and POMs covered the surface and can be used as quasi-homogenous catalyst, which are easy to recycle and also can maximize the catalytic efficiency. This work explored a new idea to make POM-base catalysts. iii ACKNOWLEDGEMENTS I would like to thank my adviser, Dr. Tianbo Liu, for providing me the opportunity to conduct this project, and thanks to Dr. Panchao Yin, who help me a lot with the experiments and knowledge, and thank Dr. Mesfin Tsige to be the committee member and reader. I also would like to thank all the group members in Dr. Tianbo Liu’s group for their help with my experiment and helpful discussion of this project. Finally, I would like to thank all my friends and my families for supporting me in everything. iv TABLE OF CONTENTS Page LIST OF FIGURES .......................................................................................................... vii LIST OF TABLES ..............................................................................................................ix CHAPTER I. INTRODUCTION ........................................................................................................... 1 1.1Introduction to Macroions ...................................................................................... 1 1.2 Introduction to Polyoxometalates ......................................................................... 2 1.3 Introduction to Polyoxometalate-Organic Hybrid Materials ................................ 4 1.4 Solution Behavior of Polyoxometalates and Their Hybrids ................................. 6 1.5 Introduction to Polyoxometalate-based catalyst ................................................... 8 1.6 Nanostructured Polyoxometalate-Polymer Latex Beads .................................... 10 II. EXPERIMENTS AND PROCEDURES ...................................................................... 12 2.1. Chemicals and Equipment ................................................................................ 12 2.2 Instrumentation ................................................................................................... 13 2.3 Synthesis of Sodium Tungstophosphate, Na9[A-PW9O34] (Tri-lacunary Keggin POM) ......................................................................................................... 13 2.4 Synthesis of Amphiphlic POM-MMA hybrid, K3[A-(RSiO)3(SiR)] (R = {H2C=C(CH3)O(CH2)3}) ........................................................................... 14 v 2.5 Emulsion Copolymerization of Amphiphilic POM-based hybrid and Styrene .. 16 2.6.1 Laser Light Scattering ...................................................................................... 17 2.7 1H, 13C, 31P Nuclear Magnetic Resonance (NMR) Spectroscopy ...................... 18 2.8 Fourier Transform Infrared Spectroscopy (FT-IR) ............................................ 18 2.9 Transmission Electron Microscope ..................................................................... 18 2.10 Thermogravimetric (TGA) Analysis ................................................................. 19 2.11 Zeta Potential Analysis ..................................................................................... 19 2.12 Measurement of Critical Micelle Concentration (CMC) .................................. 19 III. RESULTS AND DISCUSSION ................................................................................. 20 3.1 Micelle Formation of POM-MMA hybrid .......................................................... 20 3.2 The Measured Critical Micelles Concentration (CMC) ...................................... 22 3.3 Characterization of POM-PS Particles ................................................................ 24 3.4 Zeta Potential Measurement ............................................................................... 30 3.5 Thermal Stability and Composition Analysis ..................................................... 30 IV. CONCLUSION........................................................................................................... 33 REFERENCES ................................................................................................................. 34 APPENDIX ....................................................................................................................... 36 vi LIST OF FIGURES Figure Page 1. Illustration of the three categories of electrolyte solutions. ............................................ 2 2. POM anions with different topologies and sizes. ........................................................... 3 3. Main coordination modes of organic groups covalently linked to POM units via p-block elements. ......................................................................................................... 5 4. Molecular structures for hexavanadate-based hybrid surfactants, 1 and 2. .................... 8 5. The equation for the catalytic oxidation reaction of thiophene. ..................................... 9 6. a) Picture of the emulsion catalytic system of surfactant in aqueous solution at pH 6. b) Models for the catalytic system. c) Model for the biphasic catalytic reactions. .......... 9 7. Molecular structure of the hybrids. ............................................................................... 14 8. Molecular structure of Tri-lacunary Keggin POM. ...................................................... 14 9. Molecular structure of POM-based hybrid. .................................................................. 16 10. Typical experiment for emulsion polymerization. ...................................................... 17 11. DLS results of the assemblies of POM-hybrid surfactant in water. ........................... 21 12. The size estimate of the hybrid. .................................................................................. 22 13. Plot of conductivity to concentration of the hybrid water solution. ........................... 24 14. Model for hybrid stabilized emulsion and the particles after polymerization. ........... 25 15. CONTIN analysis of DLS studies on POM-Polymer nanobeads with 5mg mL-1 and vii 15mg mL-1 POM-hybrid surfactant concentration. .................................................... 25 16. TEM images of the PS nanoparticle (surfactant 15 mg/mL). ..................................... 26 17. TEM images of the PS nanoparticle (surfactant concentration 5 mg/mL) ................. 27 18. top) TEM images of the POM-polymer latex; bottom) EDS results of the surface area of the latex beads. ...................................................................................................... 28 19. FT-IR of POM-Polymer nanobeads (KBr). ............................................................... 28 20. The appearance blue color of the suspension of the latex after UV radiation. ........... 29 21. The recycling of the latex sample from its suspension by using centrifugation. ........ 30 22. TGA curves of (1) Pure POM, (2) POM-Polymer nanobeads (POM surfactant concentration is 15 mg mL-1). .................................................................................... 32 23. FT-IR of Tri-lacunary Keggin POM ........................................................................... 36 24. ESI-MS results for POM-organic hybrid. (a) Clusters with 3 negative charge; (b) Clusters with 2 negative charge; (c) Clusters with 1 negative charge. ...................... 38 25. 1H-NMR spectroscopy of POM-organic hybrid. ........................................................ 39 26. 13C-NMR spectroscopy of POM-organic hybrid. ....................................................... 40 viii LIST OF TABLES Table Page 1. Formulas and molecular structures of the hybrid surfactants studied in our group ........ 6 2. Information on the structure, charge density, and self-assembly behavior of macro-polyoxoanions in aqueous solutions ................................................................. 7 3. The experiment data for measuring CMC ...................................................................