Groups with Pr(G)=1/3 1. Introduction We Define the Commuting
Groups with Pr(G) = 1=3 STEPHEN M. BUCKLEY AND DESMOND MACHALE Abstract. We find all isoclinism families of groups with commuting proba- bility 1=3. 1. Introduction We define the commuting probability of a finite group G to be jf(x; y) 2 G × G : xy = yxgj (1) Pr(G) := ; jGj2 where jSj denotes cardinality of a set S. Much has been written on this concept: see for instance [5], [13], [8], [16], [21], [14], [4], [7], [3], and [11]. In particular, Pr(G) is an isoclinism invariant [14, Lemma 2.4], so to understand which groups have a given commuting probability t, it suffices to find all isoclinism families with commuting probability t. If F is an isoclinism family containing a finite group G, we call F a finite family and define Pr(F) to be Pr(G). Lescot [14] found all families F with Pr(F) ≥ 1=2, and the results of Rusin [21] allow one to determine all F with Pr(F) > 11=32. In this paper, we find all finite families F for which Pr(F) = 1=3. Theorem 1. There are precisely three finite families F with Pr(F) = 1=3. Each has a unique stem group, namely the alternating group A4, the dihedral group D9, and the generalized dihedral group Dih(C3 × C3). We chose the value 1=3 above because it is an interesting cutoff value. Barry, MacHale, and N´ıSh´e[2] showed that a finite group G is supersolvable if Pr(G) > 1=3, and noted that this lower bound is minimal because the alternating group A4 is not supersolvable and satisfies Pr(A4) = 1=3.
[Show full text]