Token Frenzy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Blockchain in the Integrated Energy Transition
dena MULTI-STAKEHOLDER STUDY Blockchain in the integrated energy transition Study findings (dena) Blockchain in the integrated energy transition energy in the integrated Blockchain dena MULTI-STAKEHOLDER STUDY STUDY dena MULTI-STAKEHOLDER Legal information Publisher: All content has been prepared with the greatest possible care Deutsche Energie-Agentur GmbH (dena) and is provided in good faith. dena provides no guarantee for German Energy Agency the currency, accuracy, or completeness of the information Chausseestrasse 128 a provided. dena shall not be liable for damages of a material 10115 Berlin, Germany or intangible nature resulting from the use or non-use of the Tel.: + 49 (0)30 66 777-0 information provided, whether indirectly or directly, unless Fax: + 49 (0)30 66 777-699 proof of intentional or grossly negligent culpability on its part www.dena.de is provided. Authors: All rights reserved. Consent from dena is required for any use. Philipp Richard (dena) Sara Mamel (dena) Lukas Vogel (dena) Scientific experts: Prof. Dr. Jens Strüker (INEWI) Dr. Ludwig Einhellig (Deloitte) Last updated: 02/2019 Conception & design: Heimrich & Hannot GmbH Content Foreword 4 Executive summary 6 The dena multi-stakeholder study “Blockchain in the integrated energy transition” 6 Recommended courses of action 8 Checklist for blockchain in the integrated energy transition 10 Technical findings 12 Economic findings 14 Regulatory findings 17 1 Blockchain in the integrated energy transition 20 2 Blockchain technology: status quo and development prospects -
Beauty Is Not in the Eye of the Beholder
Insight Consumer and Wealth Management Digital Assets: Beauty Is Not in the Eye of the Beholder Parsing the Beauty from the Beast. Investment Strategy Group | June 2021 Sharmin Mossavar-Rahmani Chief Investment Officer Investment Strategy Group Goldman Sachs The co-authors give special thanks to: Farshid Asl Managing Director Matheus Dibo Shahz Khatri Vice President Vice President Brett Nelson Managing Director Michael Murdoch Vice President Jakub Duda Shep Moore-Berg Harm Zebregs Vice President Vice President Vice President Shivani Gupta Analyst Oussama Fatri Yousra Zerouali Vice President Analyst ISG material represents the views of ISG in Consumer and Wealth Management (“CWM”) of GS. It is not financial research or a product of GS Global Investment Research (“GIR”) and may vary significantly from those expressed by individual portfolio management teams within CWM, or other groups at Goldman Sachs. 2021 INSIGHT Dear Clients, There has been enormous change in the world of cryptocurrencies and blockchain technology since we first wrote about it in 2017. The number of cryptocurrencies has increased from about 2,000, with a market capitalization of over $200 billion in late 2017, to over 8,000, with a market capitalization of about $1.6 trillion. For context, the market capitalization of global equities is about $110 trillion, that of the S&P 500 stocks is $35 trillion and that of US Treasuries is $22 trillion. Reported trading volume in cryptocurrencies, as represented by the two largest cryptocurrencies by market capitalization, has increased sixfold, from an estimated $6.8 billion per day in late 2017 to $48.6 billion per day in May 2021.1 This data is based on what is called “clean data” from Coin Metrics; the total reported trading volume is significantly higher, but much of it is artificially inflated.2,3 For context, trading volume on US equity exchanges doubled over the same period. -
DFINITY Technology Overview Series Consensus System
DFINITY Technology Overview Series Consensus System Rev.1 Timo Hanke, Mahnush Movahedi and Dominic Williams ABSTRACT Dfinity will be introduced in a series of technology overviews, The Dfinity blockchain computer provides a secure, performant each highlighting an independent innovation in Dfinity such as and flexible consensus mechanism. While first defined for a permis- the consensus backbone, smart contract language, virtual machine, sioned participation model, the consensus mechanism itself can be concurrent contract execution model, daemon contracts, peer-to- paired with any method of Sybil resistance (e.g. proof-of-work or peer networks and secure broadcast, governance mechanism and proof-of-stake) to create an open participation model. Dfinity’s scaling techniques. The present document will focus on the con- greatest strength is unfolded in the most challenging proof-of-stake sensus backbone and cryptographic randomness. case. Dfinity has an unbiasable, verifiable random function (VRF) At its core, Dfinity contains a decentralized randomness beacon built-in at the core of its protocol. The VRF not only drives the which acts as a verifiable random function (VRF) that produces a consensus, it will also be the foundation for scaling techniques such stream of outputs over time. The novel technique behind the beacon as sharding, validation towers, etc. Moreover, the VRF produced relies on the existence of a unique-deterministic, non-interactive, by the consensus layer is available to the application layer, i.e., to DKG-friendly threshold signatures scheme. The only known ex- the smart contracts and virtual machine. In this way, the consensus amples of such a scheme are pairing-based and derived from BLS backbone is intertwined with many of the other topics. -
Initial Crypto-Asset Offerings (Icos), Tokenization and Corporate Governance Stéphane Blémus, Dominique Guegan
Initial Crypto-asset Offerings (ICOs), tokenization and corporate governance Stéphane Blémus, Dominique Guegan To cite this version: Stéphane Blémus, Dominique Guegan. Initial Crypto-asset Offerings (ICOs), tokenization and corpo- rate governance. 2019. halshs-02079171 HAL Id: halshs-02079171 https://halshs.archives-ouvertes.fr/halshs-02079171 Submitted on 25 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Documents de Travail du Centre d’Economie de la Sorbonne Initial Crypto-asset Offerings (ICOs), tokenization and corporate governance Stéphane BLEMUS, Dominique GUEGAN 2019.04 Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital, 75647 Paris Cedex 13 https://centredeconomiesorbonne.univ-paris1.fr/ ISSN : 1955-611X Initial Crypto-asset Offerings (ICOs), tokenization and corporate governance Stéphane Blemus* & Dominique Guégan** * Paris 1 Panthéon-Sorbonne University, LabEx ReFi, Kalexius law firm, ChainTech ** Centre d’Economie de la Sorbonne, Paris 1 Panthéon-Sorbonne University, Labex ReFi, Ca’Foscari University, Venezia, IPAG Business School This interdisciplinary paper by a mathematician and a legal counsel, both from the Paris 1 Panthéon-Sorbonne University, discusses the potential impacts of the so-called “initial coin offerings”, and of several developments based on distributed ledger technology (“DLT”), on corporate governance. -
The Convergence Ecosystem
The Convergence Ecosystem Convergence 2.0 Building the Decentralised Future This document (the “Document”) has been prepared by Outlier Ventures Operations Disclaimer Limited (“Outlier Ventures”). Outlier Ventures Operations Ltd is registered in England and Wales, company registration number 10722638. Outlier Ventures Operations Ltd is an appointed representative of Sapia Partners LLP (“Sapia”) which is authorised and regulated by the Financial Conduct Authority (Firm Reference Number 550103). No undertaking, warranty or other assurance is given, and none should be implied, as to, and no reliance should be placed on, the accuracy, completeness or fairness of the information or opinions contained in this Document. The information contained in the Document is not subject to completion, alteration and verification nor should it be assumed that the information in the Document will be updated. The information contained in the Document has not been verified by Sapia, Outlier Ventures or any of its associates or affiliates. The Document should not be considered a recommendation by Sapia, Outlier Ventures or any of its directors, officers, employees, agents or advisers in connection with any purchase of or subscription for securities. Recipients should not construe the contents of this Document as legal, tax, regulatory, financial or accounting advice and are urged to consult with their own advisers in relation to such matters. The information contained in the Document has been prepared purely for informational purposes. In all cases persons should conduct their own investigation and analysis of the data in the Document. The information contained in the Document has not been approved by the Financial Conduct Authority. This Document does not constitute, or form part of, any offer of, or invitation to apply for, securities nor shall it, or the fact of its distribution, form the basis of or be relied upon in connection with any contract or commitment to acquire any securities. -
View the Slides
Pixel: Multi-Signatures for Consensus Manu Drijvers (DFINITY) Sergey Gorbunov (Algorand & University of Waterloo) Gregory Neven (DFINITY) Hoeteck Wee (Algorand & CNRS, ENS, PSL) 1 Permissioned/Proof-of-Stake Blockchains Consensus: nodes agree on sequence of blocks Proof of stake (PoS): nodes vote on block proposals, weighted by stake e.g., Algorand, Cardano, Ethereum Casper Permissioned: nodes vote by access structure e.g., Ripple, Hyperledger Fabric Permissioned/Proof-of-Stake Blockchains Consensus: nodes agree on sequence of blocks Proof of stake (PoS): nodes sign block proposals, weighted by stake e.g., Algorand, Cardano, Ethereum Casper Permissioned: nodes sign by access structure e.g., Ripple, Hyperledger Fabric Multi-Signatures in Blockchains single multi-signature Σ under pk1,...,pkn on m short signature, efficient verification (preferably ≈ single signature) [IN83, OO91, MOR01, BLS01, B03, BN06, BDN18, ...] The Problem of Posterior Corruption [BPS16] aka long-range attacks [B15], costless simulation [P15] Chain integrity assumption: ≤ fraction f of nodes/stake corrupt The Problem of Posterior Corruption [BPS16] aka long-range attacks [B15], costless simulation [P15] Chain integrity assumption: ≤ fraction f of nodes/stake corrupt The Problem of Posterior Corruption [BPS16] aka long-range attacks [B15], costless simulation [P15] Chain integrity assumption: ≤ fraction f of nodes/stake signing keys corrupt The Problem of Posterior Corruption [BPS16] aka long-range attacks [B15], costless simulation [P15] Chain integrity assumption: -
DFINITY Crypto Techniques
INTRODUCING DFINITY Crypto Techniques V1 - 19th May 2017 Threshold Relay Produce randomness that is incorruptible, unmanipulable and unpredictable BACKGROUNDER Explain “unique deterministic” threshold signatures… Usually a signer creates a signature on message data Shared seed data (“message”) 01010101010 11010111011 01010101010 10101001010 Verifier Signature SIGN σ 10101010101 Private 00101101010 Key 10010101010 10010101001 Verifier Signer’s identity Public Key Signer Verifier AUTHORIZED SIGNER SIGNATURE VERIFIERS That can be verified using the signer’s public key Shared seed data (“message”) 01010101010 11010111011 01010101010 10101001010 Verifier Signature SIGN 10101010101 Private 00101101010 Key 10010101010 10010101001 VERIFY Verifier Signer’s identity Public Key Signer Verifier AUTHORIZED SIGNER SIGNATURE VERIFIERS If scheme unique and deterministic then only 1 correct signature Shared seed data THE SIGNATURE IS A RANDOM NUMBER, AS IF (“message”) IT WERE PREDICTABLE, THE SIGNATURE SCHEME WOULD NOT BE SECURE 01010101010 11010111011 01010101010 10101001010 Verifier Signature SIGN 10101010101 DETERMINISTIC Private 00101101010 RANDOM Key 10010101010 10010101001 VERIFY NUMBER Verifier Signer’s identity Public Key Signer Verifier AUTHORIZED SIGNER SIGNATURE VERIFIERS Unique and deterministic threshold signature scheme possible GROUP MEMBERS INDEPENDENTLY SIGN THE Shared seed data MESSAGE TO CREATE “SIGNATURE SHARES”. (“message”) A THRESHOLD NUMBER ARE COMBINED TO CREATE THE OUTPUT SIGNATURE 01010101010 11010111011 01010101010 10101001010 Verifier -
Should Retailers Ride the Cryptocurrency Roller Coaster?
9/17/2018 Should Retailers Ride the Cryptocurrency Roller Coaster? Jobs Resource Guide Advertise Search Topics Events Podcasts Videos Blogs Resources Subscribe E-COMMERCE March 19, 2018 Should Retailers Ride the Cryptocurrency Roller Coaster? By Amitaabh Malhotra Cryptocurrency may be the future of money, but it’s a tough sell in the retail world right now, and for good reason. The most familiar cryptocurrency unit, bitcoin, has been on a roller-coaster ride for the past few months, rising to a peak value near $20,000 in December 2017 before crashing below $6,000 in early February 2018, and then rebounding back to around $11,000. That volatility makes bitcoin untenable as a payment in most retail situations. In 2014, rapper 50 Cent accepted a cryptocurrency payment for an album, receiving 700 bitcoins, which amounted to approximately $400,000 in dollar value at the time. He held on to the payment, and in January 2018, Newsweek reported that the value of his bitcoins had risen to nearly $8 million. As of this writing, the 700 bitcoins are worth around $4.8 million. https://www.mytotalretail.com/article/should-retailers-ride-the-cryptocurrency-roller-coaster/ 1/5 9/17/2018 Should Retailers Ride the Cryptocurrency Roller Coaster? 50 Cent’s experience as an accidental bitcoin millionaire illustrates the challenges of accepting cryptocurrency as payment for goods: the value isn’t pegged to anything solid, and when it rises and falls, the value of the goods purchased don’t rise and fall in correlation. Imagine accepting one bitcoin for a car on Feb. -
The Tree of Blockchain to Shed Light on the Innovation Within Different Components
THE TREE OF BLOCKCHAIN APREPRINT Florian Spychiger∗ Paolo Tasca School of Management and Law Centre for Blockchain Technologies Zurich University of Applied Sciences University College London Winterthur, Switzerland London, Great Britain [email protected] [email protected] Claudio J. Tessone y Business Administration University of Zurich Zurich, Switzerland [email protected] October 7, 2020 ABSTRACT This study covers the evolutionary development of blockchain technologies over the last 11 years (2009 – 2019) and sheds lights on potential areas of innovation in heretofore unexplored sub- components. For this purpose, we collected and analysed detailed data on 107 different blockchain technologies and studied their component-wise technological evolution. The diversity of their designs was captured by deconstructing the blockchains using the Tasca-Tessone taxonomy (2019) to build what we call the "tree of blockchain" composed of blockchain main and sub-components. With the support of information theory and phylogenetics, we found that most design explorations have been conducted within the components in the areas of consensus mechanisms and cryptographic primitives. We also show that some sub-components like Consensus Immutability and Failure Tolerance, Access and Control layer and Access Supply Management have predictive power over other sub-components. We finally found that few dominant design models - the genetic driving clusters of Bitcoin, Ethereum and XRP - influenced the evolutionary paths of most of the succeeding blockchains. -
Annexes-A-4-Artificial-Intelligence-And-Data-And-Blockchain Full-Report.Pdf
The Future of Services ANNEXES A-4 ARTIFICIAL INTELLIGENCE & DATA, AND BLOCKCHAIN Workgroup 4 Report: AI & Data, and Blockchain CONTENTS 1 INTRODUCTION & OVERVIEW ...................................................................................................... 3 2 MARKET STUDY ............................................................................................................................. 4 2.1 GLOBAL MARKET POTENTIAL OF AI ........................................................................................... 4 2.2 SINGAPORE MARKET POTENTIAL OF AI ..................................................................................... 4 2.3 GLOBAL MARKET POTENTIAL OF BLOCKCHAIN (INCLUDES OTHER DISTRIBUTED LEDGER TECHNOLOGIES) .................................................................................................................................. 5 2.4 SINGAPORE MARKET POTENTIAL OF BLOCKCHAIN ..................................................................... 5 3 TECHNOLOGY STUDY ................................................................................................................... 7 3.1 ARTIFICIAL INTELLIGENCE ......................................................................................................... 7 3.2 BLOCKCHAIN .......................................................................................................................... 18 3.3 CONVERGENCE OF AI AND DATA, AND BLOCKCHAIN ................................................................. 31 3.4 AI, DATA AND BLOCKCHAIN -
Tecnología Blockchain Autor María Del Pilar Arias Torres Trabajo De
Tecnología Blockchain Autor María del Pilar Arias Torres Trabajo de grado presentado como requisito para optar al título de: Especialista de Gerencia en Comercio Internacional Director Miguel Molano Caro Universidad Militar Nueva Granada Facultad de Ciencias Económicas Especialización de Gerencia en Comercio Internacional Bogotá DC, 3 de diciembre 2018. II Tabla de contenido Resumen .......................................................................................................... 1 Palabras claves ............................................................................................. 1 Introducción ...................................................................................................... 3 Planteamiento del Problema ......................................................................... 4 Pregunta Problema .................................................................................... 6 Objetivos ....................................................................................................... 6 Objetivo General ........................................................................................ 6 Objetivos Específicos ................................................................................. 7 Marco Teórico ................................................................................................... 7 Bitcoin ........................................................................................................... 9 Desarrollo ................................................................................................... -
October 2017 Issue #15
THE B EACON Florida Fusion Center #17-145 Cyber and Critical Infrastructure Report October 2017 Issue #15 Summary Contents AlphaBay Taken Down - The largest Dark Web Market in Su mary history was taken down. We give you the details. ditor’s Corner North Korea’s Dynamic Cyber Force - North Korea is not only trying to exert power physically, it is working to expand yber Threats its cyber capabilities as well. AlphaBay Taken Down North Korea’s Dynamic Facebook AI: What Really Happened? - Is Facebook Cyber Fo ce spearheading the robot revolution? We look at the facts. yber Highlights Comparing Cryptocurrencies - You’ve heard about Bitcoin; Facebook AI: What now we compare some of the other prominent types. Really Hapeened Cybersecurity Hygiene - Just like the dentist and flossing, Comparing it’s always important to get a reminder of the best Cryptocurrencies practices for good cybersecurity. Cybersecurity Hygiene Hiding In Plain Sight - Steganography has been around for Hiding in Plain Sight millennia, but we discuss how it plays a role in tech and So Your Identity’s Been cybersecurity today. Sto en So Your Identity’s Been Stolen - What to do if you are a esign 101 victim of the Equifax breach. Understanding Co or: Part Understanding Color - Part 1 of a 2 part discussion on color and how to work with it. ispatch Highlights About The Secure Florida Beacon The Secure Florida Beacon is published by Secure Florida to highlight cyber and critical infrastructure security information and awareness. Secure Florida is an internet safety and awareness effort of the Florida Department of Law Enforcement’s Florida Infrastructure Protection Center (FIPC).