On Dimension Subgroups and the Lower Central Series . Abstract

Total Page:16

File Type:pdf, Size:1020Kb

On Dimension Subgroups and the Lower Central Series . Abstract ON DIMENSION SUBGROUPS AND THE LOWER CENTRAL SERIES . ABSTRACT AUTHOR: Graciela P. de Schmidt TITLE OF THESIS: On Dimension Subgroups and the Lower Central Series. DEPARTMENT Mathematics • DEGREE: Master of Science. SUMMARY: The aim of this thesis is to give an ex- position of several papers in which the relationship between the series of dimension subgroups of a group G and the lower central series of G is studies. The first theorem on the subject, proved by W. Magnus,asserts that when G is free the two series coincide term by terme This thesis presents a proof of that theorem together with the proofs of several related results which have been obtained more recently; moreover, it gathers together the various techniques from combinatorial group theory, commutator calculus, group rings and the the ory of graded Lie algebras, which have been used in studying this topic. ON DIMENSION SUBGROUPS AND THE LOWER CENTRAL SERIES by Graciela P. de Schmidt A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILMENT OF THE REQUlREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Department of Mathematics McGill University Montreal May 1970 ® Graciela P. de Schmidt (i) PREFACE The aim of this thesis is to give an exposition of several papers in which the relationship between the series of dimension subgroups of a group G and the lower central series of G is studied. It has been conjectured that for an arbitrary group the two series coincide term by terme W. Magnus [12] proved that this is indeed the case for free groups and several authors have generalized his result in various directions. The conjecture has now been proved for sorne special classes of groups [9], [11]; however, up to now, the attack on the problem for an arbitrary group has only yielded the identity of the first three terms of the series [7]. Several approaches have been taken in dealing with this problem: the techniques of combinatorial group theory, commutator calculus, group rings and the theory of graded Lie algebras have been mixed in various proportions. In order to elucidate and unify our exposition of sorne of the main theorems on the subject appearing in the literature, it is necessary to present a lot of background material relevant to these topics. In conclusion l would like to thank Professor W. Jonsson who introduced me to this problem through a seminar and has been of great assistance at all times. (ii) TABLE OF CONTENTS page §1. CENTRAL SERIES 1 §2. POLYCYCLIC GROUPS 12 §3. THE COLLECTING PROCESS 19 §4. GROUP RING AND DIMENSION SUBGROUPS 32 ~ §5. THE POINCARE-BIRKHOFF-WITT THEO REM 42 §6. MAGNUS THEO REM 51 §7. CASES n = 2, n = 3 FOR AN ARBITRARY GROUP 62 § 8. SOME FUR'l~HER RESULTS 72 REFERENCES 77 §l. CENTRAL SERIES In this section we state and prove sorne results on central series and nilpotence, of which we will make use later, they can be found for instance as part of a more complete exposition in the notes of Philip Hall 12] or in the book on Theory of Groups by Marshall Hall [1]. The notation is standard in works on Group Theory but we recall sorne for the more frequently used concepts. For any group G, 1 will denote the identity element of Gand also the subgroup of G consisting of the identity alone. If x,y E G, then [x,y] will denote the commutator x-ly-lxy, and for n > 2 one defines recursively the simple commutator [xl'···,xn] = [Ixl, ••• ,xn_l],xn]. If H,K are subgroups of G, then [H,K] will denote the subgroup of G generated by '{[x,y], x E H, Y E K}, and similarly we define [Hl, ••• ,Hn] for subgroups Hl, ••• ,Hn of G. In general, we denote by <x. , i E I> the group ~ generated by the set {xi' i El}. (1.1) Lemma. Let G be any group, x,y,z E G. Then z (i) [x,yz] = Ix, z] [x,y] , (ii) [xy, z] = [x,z]y[y,z]; (iii) Ix,y -1 ,z] Y Iy,z -1 ,x] z Iz,x-1 ,y] x = 1; 2. Pro'of: xY = x[x,y] and xy = yxlx,y] = yxY• So yz x = x[x,yz], but a1so Cance11ation of x in both expressions of xYz yie1ds (i). Next, (xy)z = xy[xy,z], and a1so cance11ation of xy gives (ii). Now let u = xzx -1yx, and v,w be obtained from u by cyc1ic permutations of x,y,z. Then [x,y-1,z]y = y-1[x,y-1]-lz-l[x,y-1]zy = = y-1y(x-1y-1xz-1x-1 ) (yxy-1zy) = u -1v. -1 z -1 -1 x -1 Simi1ar1y [y,z ,x] = v w, [z,x ,y] = w u and (iii) ho1ds. Since -1 Y -1 -1 -1 -1 -1 -1 -1 [x,y ,z] = x y x(yy }z (yy )x yxy zy = = [x,y] (z-l)Y[y,x]zy = [[y,x],zY] we obtain (iv) by rep1acing this and the corresponding expressions for the other two factors in eLi-i) 3. D'ef'initions. Let Gi be a subgroup of G, i = 0, l , • •• • An asc'e'ndingser'ies is a series (1.2) A descending series is a series (1.2') > l . These concepts of course coincide for f'inite series (1.3) (1.4) A descending series is called a C'en'tral series if G. ~ is a normal subgroup of G for i = 1,2, ••• and Gi/Gi +l is in the center of G/Gi +l , or equivalently if [G,Gi ] ~ Gi +l , i = 1,2, •••• Similarly one defines ascending central series. Instances of central series are: (1.5) the upper central series ~ G , where Zi+1G is defined to be the subgroup of G such that Zi+1G/ZiG is the center of G/ZiG, and ZOG = 1. Thus ZlG is the center of G. (1.6) the lower centra'l' se'r'i'es G = r l G ~ r 2G ~ ••• -> l 4. where one defines rlG = Gand ri+1G = [G,riG] for i = 1,2,.... r 2G = [G,G] = G' is called the derived group or the commutator subgroup of G. The subgroups r.G,1. i = 1,2, ••• are not only normal subgroups of G, but also fully invariant, since any group homornorphism maps commutators into commutators. These series are called "upper" and "lower" because of the following (1.7) Lemma. (a) For any descending central series such as (1.2') r.G < G. j = 1,2, ••• ,. ) J (b) for any ascending central series (1.2) Z.G1. -> G.1. i = 0,1,2, •••• Proof: We prove these relations by induction on i and j. For i = 0, j = 1 they hold by definition. Let G. > r.G for sorne j ~ 1; then ) - ) since the series Gl ~ G2 > is central. This proves (a). G~ for sorne then For (b), assume Z1.,G -> 1. i ~ 0; gG. onto the map of G!G.1. into G;ZiG that sends the coset 1. 5. the coset gZiG, g e: G, is onto with kernel ZiG/Gi. Now Gi+l/Gi is in the centre of G/Gi by definition of a central series, so its image G'+lz.G/z.G must lie in the center of ~ ~ ~ G/ZiG, i.e. in Zi+lG/ZiG. Hence and the proof is complete. (1.8) Definition. A group G is called nilpotent if there exists an integer k > 1 such that rkG = l, i.e. if the lower central series is fini te. We say that a fini te series (1.3) has leng:th r, r > l, if 1 but 1. The c'l'ass of a nilpotent - Gr + l = Gr =1 group G is by definition the length c of the lower central series of G, if G =1 1 and it is 0 if (and only if) G = 1. Thus Abelian groups are precisely the nilpotent g~oups of class 1. (1.9) Lemma. If K is a normal subgroup of G, then r, (G/K) = Kr, (G)/K. In particular G/K is nilpotent J J if and.. only if K contains sorne term of the lower cenlttral series. Proof: If 7T: G -+ G/K is the canonical projection, then since rjG is fully invariant 6. Since ~ is onto, equality holds. (1.10) Lemma. If G is nilpotent of class c, then every subgroup and every factor group of G is also nilpotent, of class at most c. (1.11) Lemma. If IGI = pn > l, where p is a prime, then G is nilpotent of class at most n. pr'oof: The center of a fini te p-group is bigger than the identity alone (cf. [1], theorem 4.3.1), so ZIG> 1; by the same reason ZiG> Zi_lG, i ~ l, since G/Zi_lG is also a finite p-group. One sees by induction on i that IG : ZiGI ~ pn-i, so the upper central series terminates and ZnG = G. Since the lower central series is contained in it, we must have rn+lG = 1. (1.12) Lemma. Let G be the group generated by a set A, let B be a subset of G, and let H = <BG> where BG =' {b,g " g,E G b E B} • Then [H,G] = <cG>, where c = {[a,b]; a E A, b E B}. G Proof: Let K = <C >. Clearly H and K are normal in G and so K -< [H ,G] • Now consider G/K; since [a,b] E K for aIl a E A, b E B by definition of K, every generator a of G' commutes with every b E B mod K, so BK/K is contained in the center of G/K, and the same is true for HK/K.
Recommended publications
  • The Relationship Between the Upper and Lower Central Series: a Survey
    Introduction Generalization of Baer’s Theorem THE RELATIONSHIP BETWEEN THE UPPER AND LOWER CENTRAL SERIES: A SURVEY Martyn R. Dixon1 1Department of Mathematics University of Alabama Ischia Group Theory 2016 Thanks to Leonid Kurdachenko for his notes on this topic Martyn R. Dixon THE UPPER AND LOWER CENTRAL SERIES The last term Zγ(G) of this upper central series is denoted by Z1(G), the upper hypercentre of G. Let 0 G = γ1(G) ≥ γ2(G) = G ≥ · · · ≥ γα(G) ::: be the lower central series of G. Introduction Generalization of Baer’s Theorem Preliminaries Let 1 = Z0(G) ≤ Z1(G) = Z (G) ≤ Z2(G) ≤ · · · ≤ Zα(G) ≤ ::: Zγ(G) be the upper central series of G. Martyn R. Dixon THE UPPER AND LOWER CENTRAL SERIES Let 0 G = γ1(G) ≥ γ2(G) = G ≥ · · · ≥ γα(G) ::: be the lower central series of G. Introduction Generalization of Baer’s Theorem Preliminaries Let 1 = Z0(G) ≤ Z1(G) = Z (G) ≤ Z2(G) ≤ · · · ≤ Zα(G) ≤ ::: Zγ(G) be the upper central series of G. The last term Zγ(G) of this upper central series is denoted by Z1(G), the upper hypercentre of G. Martyn R. Dixon THE UPPER AND LOWER CENTRAL SERIES Introduction Generalization of Baer’s Theorem Preliminaries Let 1 = Z0(G) ≤ Z1(G) = Z (G) ≤ Z2(G) ≤ · · · ≤ Zα(G) ≤ ::: Zγ(G) be the upper central series of G. The last term Zγ(G) of this upper central series is denoted by Z1(G), the upper hypercentre of G. Let 0 G = γ1(G) ≥ γ2(G) = G ≥ · · · ≥ γα(G) ::: be the lower central series of G.
    [Show full text]
  • Cohomology of Nilmanifolds and Torsion-Free, Nilpotent Groups by Larry A
    transactions of the american mathematical society Volume 273, Number 1, September 1982 COHOMOLOGY OF NILMANIFOLDS AND TORSION-FREE, NILPOTENT GROUPS BY LARRY A. LAMBE AND STEWART B. PRIDDY Abstract. Let M be a nilmanifold, i.e. M = G/D where G is a simply connected, nilpotent Lie group and D is a discrete uniform, nilpotent subgroup. Then M — K(D, 1). Now D has the structure of an algebraic group and so has an associated algebraic group Lie algebra L(D). The integral cohomology of M is shown to be isomorphic to the Lie algebra cohomology of L(D) except for some small primes depending on D. This gives an effective procedure for computing the cohomology of M and therefore the group cohomology of D. The proof uses a version of form cohomology defined for subrings of Q and a type of Hirsch Lemma. Examples, including the important unipotent case, are also discussed. Let D be a finitely generated, torsion-free, nilpotent group of rank n. Then the upper central series of D can be refined so that the n successive subquotients are infinite cyclic. Thus i)*Z" as sets and P. Hall [H] has shown that in these coordinates the product on D is a polynomial function p. It follows that D can be viewed as an algebraic group and so has an associated Lie algebra constructed from the degree two terms of p. The purpose of this paper is to study the integral cohomology of D using this algebraic group Lie algebra. Although these notions are purely algebraic, it is helpful to work in a more geometric context using A.
    [Show full text]
  • Nilpotent Groups
    Chapter 7 Nilpotent Groups Recall the commutator is given by [x, y]=x−1y−1xy. Definition 7.1 Let A and B be subgroups of a group G.Definethecom- mutator subgroup [A, B]by [A, B]=! [a, b] | a ∈ A, b ∈ B #, the subgroup generated by all commutators [a, b]witha ∈ A and b ∈ B. In this notation, the derived series is given recursively by G(i+1) = [G(i),G(i)]foralli. Definition 7.2 The lower central series (γi(G)) (for i ! 1) is the chain of subgroups of the group G defined by γ1(G)=G and γi+1(G)=[γi(G),G]fori ! 1. Definition 7.3 AgroupG is nilpotent if γc+1(G)=1 for some c.Theleast such c is the nilpotency class of G. (i) It is easy to see that G " γi+1(G)foralli (by induction on i). Thus " if G is nilpotent, then G is soluble. Note also that γ2(G)=G . Lemma 7.4 (i) If H is a subgroup of G,thenγi(H) " γi(G) for all i. (ii) If φ: G → K is a surjective homomorphism, then γi(G)φ = γi(K) for all i. 83 (iii) γi(G) is a characteristic subgroup of G for all i. (iv) The lower central series of G is a chain of subgroups G = γ1(G) ! γ2(G) ! γ3(G) ! ··· . Proof: (i) Induct on i.Notethatγ1(H)=H " G = γ1(G). If we assume that γi(H) " γi(G), then this together with H " G gives [γi(H),H] " [γi(G),G] so γi+1(H) " γi+1(G).
    [Show full text]
  • A Survey on Automorphism Groups of Finite P-Groups
    A Survey on Automorphism Groups of Finite p-Groups Geir T. Helleloid Department of Mathematics, Bldg. 380 Stanford University Stanford, CA 94305-2125 [email protected] February 2, 2008 Abstract This survey on the automorphism groups of finite p-groups focuses on three major topics: explicit computations for familiar finite p-groups, such as the extraspecial p-groups and Sylow p-subgroups of Chevalley groups; constructing p-groups with specified automorphism groups; and the discovery of finite p-groups whose automorphism groups are or are not p-groups themselves. The material is presented with varying levels of detail, with some of the examples given in complete detail. 1 Introduction The goal of this survey is to communicate some of what is known about the automorphism groups of finite p-groups. The focus is on three topics: explicit computations for familiar finite p-groups; constructing p-groups with specified automorphism groups; and the discovery of finite p-groups whose automorphism groups are or are not p-groups themselves. Section 2 begins with some general theorems on automorphisms of finite p-groups. Section 3 continues with explicit examples of automorphism groups of finite p-groups found in the literature. This arXiv:math/0610294v2 [math.GR] 25 Oct 2006 includes the computations on the automorphism groups of the extraspecial p- groups (by Winter [65]), the Sylow p-subgroups of the Chevalley groups (by Gibbs [22] and others), the Sylow p-subgroups of the symmetric group (by Bon- darchuk [8] and Lentoudis [40]), and some p-groups of maximal class and related p-groups.
    [Show full text]
  • Solvable and Nilpotent Groups
    SOLVABLE AND NILPOTENT GROUPS If A; B ⊆ G are subgroups of a group G, define [A; B] to be the subgroup of G generated by all commutators f[a; b] = aba−1b−1 j a 2 A; b 2 Bg. Thus, the elements of [A; B] are finite products of such commutators and their inverses. Since [a; b]−1 = [b; a], we have [A; B] = [B; A]. If both A and B are normal subgroups of G then [A; B] is also a normal subgroup. (Clearly, c[a; b]c−1 = [cac−1; cbc−1].) Recall that a characteristic [resp fully invariant] subgroup of G means a subgroup that maps to itself under all automorphisms [resp. all endomorphisms] of G. It is then obvious that if A; B are characteristic [resp. fully invariant] subgroups of G then so is [A; B]. Define a series of normal subgroups G = G(0) ⊇ G(1) ⊇ G(2) ⊇ · · · G(0) = G; G(n+1) = [G(n);G(n)]: Thus G(n)=G(n+1) is the derived group of G(n), the universal abelian quotient of G(n). The above series of subgroups of G is called the derived series of G. Define another series of normal subgroups of G G = G0 ⊇ G1 ⊇ G2 ⊇ · · · G0 = G; Gn+1 = [G; Gn]: This second series is called the lower central series of G. Clearly, both the G(n) and the Gn are fully invariant subgroups of G. DEFINITION 1: Group G is solvable if G(n) = f1g for some n. DEFINITION 2: Group G is nilpotent if Gn = f1g for some n.
    [Show full text]
  • Lattices and Nilmanifolds
    Chapter 2 Lattices and nilmanifolds In this chapter, we discuss criteria for a discrete subgroup Γ in a simply connected nilpotent Lie group G to be a lattice, as well as properties of the resulting quotient G=Γ. 2.1 Haar measure of a nilpotent Lie group The map exp is a diffeomorphism between the Lie algebra g of a simply connected Lie algebra G and G itself. On both g and G there are natural volume forms. On g, this is just the Euclidean volume denoted by mg. On G, there is a natural left invariant measure, the left Haar measure, denoted by mG. The choices of mg and mG are unique up to a renormalizing factor. Proposition 2.1.1. Suppose G is a simply connected nilpotent Lie group and g is its Lie algebra. After renormalizing if necessary, the pushforward measure exp∗ mg coincides with mG. r Proof. Fix a filtration fgigi=1 (for example the central lower series fg(i)g) and a Mal'cev basis X adapted to it. Since the left Haar measure is unique to renormalization, it suffices to show that exp∗ mg is invariant under left multiplication. This is equivalent to that mg is invariant under left multi- plications in the group structure (g; ). On g, use the linear coordinates (1.16) determined by X . Then for Pm Pm U = j=1 ujXj and V = j=1 VjXj, W = U V is given by the formula (1.18). Thus the partial derivative in V of U V can be written in block 32 CHAPTER 2.
    [Show full text]
  • Two Theorems in the Commutator Calculush
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 167, May 1972 TWO THEOREMS IN THE COMMUTATOR CALCULUSH BY HERMANN V. WALDINGER Abstract. Let F=(a, by. Let jF„ be the «th subgroup of the lower central series. Let p be a prime. Let c3 < c4 < • • • < cz be the basic commutators of dimension > 1 but <p + 2. Let Pi = («, b), Pm= (Pm-ub) for m>\. Then (a, b") = rif - 3 <í' modFp +2. It is shown in Theorem 1 that the exponents t¡¡ are divisible by p, except for the expo- nent of Pv which = 1. Let the group 'S be a free product of finitely many groups each of which is a direct product of finitely many groups of order p, a prime. Let &' be its commutator sub- group. It is proven in Theorem 2 that the "^-simple basic commutators" of dimension > 1 defined below are free generators of 'S'. I. Introduction. This paper is the result of research on the factor groups of the lower central series of groups, ^, defined below before the statement of Theorem 2. It was shown in [8] that these factor groups have bases which are images of special words in "fundamental commutators." The author has now succeeded in showing that there are such bases which consist of images of specific powers of "fundamental commutators." The present proof of this result is very complicated, but it requires Theorems 1 and 2 below which are of interest in themselves. In a classical paper [4], P. Hall first established the following identity (1.1): Let F=F, be the free group with a, b as free generators.
    [Show full text]
  • The Lower Central and Derived Series of the Braid Groups of the Sphere and the Punctured Sphere
    The lower central and derived series of the braid groups of the sphere and the punctured sphere. Daciberg Gonçalves, John Guaschi To cite this version: Daciberg Gonçalves, John Guaschi. The lower central and derived series of the braid groups of the sphere and the punctured sphere.. Transactions of the American Mathematical Society, American Mathematical Society, 2009, 361 (7), pp.3375-3399. 10.1090/S0002-9947-09-04766-7. hal-00021959 HAL Id: hal-00021959 https://hal.archives-ouvertes.fr/hal-00021959 Submitted on 30 Mar 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The lower central and derived 2 series of the braid groups Bn(S ) 2 and Bm(S x1,...,xn ) \ { } Daciberg Lima Gon¸calves John Guaschi 17th March 2006 Author address: Departamento de Matematica´ - IME-USP, Caixa Postal 66281 - Ag. Cidade de Sao˜ Paulo, CEP: 05311-970 - Sao˜ Paulo - SP - Brazil. E-mail address: [email protected] Laboratoire de Mathematiques´ Emile Picard, UMR CNRS 5580, UFR-MIG, Universite´ Toulouse III, 31062 Toulouse Cedex 9, France. E-mail address: [email protected] ccsd-00021959, version 1 - 30 Mar 2006 Contents Preface vi 1.
    [Show full text]
  • A Family of Complex Nilmanifolds with in Nitely Many Real Homotopy Types
    Complex Manifolds 2018; 5: 89–102 Complex Manifolds Research Article Adela Latorre*, Luis Ugarte, and Raquel Villacampa A family of complex nilmanifolds with innitely many real homotopy types https://doi.org/10.1515/coma-2018-0004 Received December 14, 2017; accepted January 30, 2018. Abstract: We nd a one-parameter family of non-isomorphic nilpotent Lie algebras ga, with a ∈ [0, ∞), of real dimension eight with (strongly non-nilpotent) complex structures. By restricting a to take rational values, we arrive at the existence of innitely many real homotopy types of 8-dimensional nilmanifolds admitting a complex structure. Moreover, balanced Hermitian metrics and generalized Gauduchon metrics on such nilmanifolds are constructed. Keywords: Nilmanifold, Nilpotent Lie algebra, Complex structure, Hermitian metric, Homotopy theory, Minimal model MSC: 55P62, 17B30, 53C55 1 Introduction Let g be an even-dimensional real nilpotent Lie algebra. A complex structure on g is an endomorphism J∶ g Ð→ g satisfying J2 = −Id and the integrability condition given by the vanishing of the Nijenhuis tensor, i.e. NJ(X, Y) ∶= [X, Y] + J[JX, Y] + J[X, JY] − [JX, JY] = 0, (1) for all X, Y ∈ g. The classication of nilpotent Lie algebras endowed with such structures has interesting geometrical applications; for instance, it allows to construct complex nilmanifolds and study their geometric properties. Let us recall that a nilmanifold is a compact quotient Γ G of a connected, simply connected, nilpotent Lie group G by a lattice Γ of maximal rank in G. If the Lie algebra g of G has a complex structure J, then a compact complex manifold X = (Γ G, J) is dened in a natural way.
    [Show full text]
  • 8 Nilpotent Groups
    8 Nilpotent groups Definition 8.1. A group G is nilpotent if it has a normal series G = G0 · G1 · G2 · ¢ ¢ ¢ · Gn = 1 (1) where Gi=Gi+1 · Z(G=Gi+1) (2) We call (1) a central series of G of length n. The minimal length of a central series is called the nilpotency class of G. For example, an abelian group is nilpotent with nilpotency class · 1. Some trivial observations: First, nilpotent groups are solvable since (2) implies that Gi=Gi+1 is abelian. Also, nilpotent groups have nontrivial cen- ters since Gn¡1 · Z(G). Conversely, the fact that p-groups have nontrivial centers implies that they are nilpotent. Theorem 8.2. Every finite p-group is nilpotent. Proof. We will construct a central series of a p-group G from the bottom up. k The numbering will be reversed: Gn¡k = Z (G) which are defined as follows. 0 0. Z (G) = 1 (= Gn where n is undetermined). 1. Z1(G) = Z(G)(> 1 if G is a p-group). 2. Given Zk(G), let Zk+1(G) be the subgroup of G which contains Zk(G) and corresponds to the center of G=Zk(G), i.e., so that Zk+1(G)=Zk(G) = Z(G=Zk(G)) Since G=Zk(G) is a p-group it has a nontrivial center, making Zk+1(G) > Zk(G) unless Zk(G) = G. Since G is finite we must have Zn(G) = G for some n making G nilpotent of class · n. For an arbitrary group G the construction above gives a (possibly infinite) sequence of characteristic subgroups of G: 1 = Z0(G) · Z(G) = Z1(G) · Z2(G) · ¢ ¢ ¢ We call this the upper central series of G (because it has the property that n¡k Z (G) ¸ Gk for any central series fGkg of length n.
    [Show full text]
  • On the Relationships Between the Factors of Upper and Lower Central Series in Groups and Other Algebraic Structures
    Note di Matematica ISSN 1123-2536, e-ISSN 1590-0932 Note Mat. 36 (2016) suppl. 1, 35{50. doi:10.1285/i15900932v36suppl1p35 On the relationships between the factors of upper and lower central series in groups and other algebraic structures Leonid A. Kurdachenko Department of Algebra, Dnepropetrovsk National University, Gagarin Prospect 70, Dnepropetrovsk 10, Ukraine [email protected] Igor Ya. Subbotin Department of Mathematics, National University, 5245 Pacific Concourse Drive, Los Angeles, CA 90045, USA [email protected] Received: 21.04.2016; accepted: 05.05.2016. Abstract. We discuss some new recent development of the well known classical R. Baer and B. Neumann theorems. More precisely, we want to show the thematic which evolved from the mentioned classical results describing the relations between the central factor-group and the derived subgroup in an infinite group. We track these topics not only in groups, but also in some other algebraic structures. Keywords: Schur Theorem, Baer Theorem, Neumann Theorem, central factor-group, derived subgroup, Leibniz algebras, Topological groups MSC 2010 classification: 20F14, 20F19, 20E34, 20G15, 20F22, 17A32, 22A05 The concepts of the center, upper central series, and lower central series are very important notions not only in group theory but also in some other algebraic structures. If G is a group, then the central factor-group G/ζ(G) and the derived subgroup [G, G] indicate how far the group G is from being abelian: Thus if G/ζ(G) or [G, G] is trivial, then G is abelian. The question about relations between these two groups arises naturally. The following classical result on infinite groups is the first answer on this question.
    [Show full text]
  • Section II.8. Normal and Subnormal Series
    II.8. Normal and Subnormal Series 1 Section II.8. Normal and Subnormal Series Note. In this section, two more series of a group are introduced. These will be useful in the Insolvability of the Quintic. In addition, the Jordan-H¨older Theorem will be stated and proved. This result illustrates the usefulness of a study of finite simple groups. Definition II.8.1. A subnormal series of a group G is a chain of subgroups G = G0 > G1 > ··· > Gn such that Gi+1 is normal in Gi for 0 ≤ i<n. The factors of the series are the quotient groups Gi/Gi+1. The length of the series is the number of strict inclusions (or equivalently, the number of nonidentity factors). A subnormal series such that Gi is normal in G for all i is a normal series. Note. Of course every normal series is a subnormal series, but a subnormal series may not be normal (see Exercise I.5.10). Note. We can have K/H and H/G, but this does not necessarily imply that K is a normal subgroup of G. In Exercise II.7.9 it is shown that the commutator subgroup 0 ∼ Z Z of G = A4 is H = A4 = 2⊕ 2. In fact (with the usual notation for the permutation 0 group S4), A4 = {(1)(2)(3)(4), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. By Theorem 0 0 II.7.8, A4 /A4. Now K = {(1)(2)(3)(4), (1, 2)(3, 4)} is a normal subgroup of A4 (by Exercise I.5.1), but K is not a normal subgroup of G = A4 since for (2, 3)(1, 3) = −1 (1, 2, 3) ∈ A4 we have (1, 2, 3)((1, 2)(3, 4))(1, 2, 3) = (1, 2, 3)(1, 2)(3, 4)(1, 3, 2) = (1, 3)(2, 4) 6∈ K.
    [Show full text]