Haynes® 282® Alloy

Total Page:16

File Type:pdf, Size:1020Kb

Haynes® 282® Alloy HIGH-TEMPERATURE ALLOYS HAYNES® 282® ALLOY A new, wrought, age-hardenable, nickel superalloy designed for improved creep strength, weldability, and fabricability. Contents Principal Features 3 Creep and Stress-Rupture Strength 4 Strain-Age Cracking Resistance 7 Tensile Properties 8 Hardness 9 Aging Kinetics 10 Oxidation Resistance 11 Thermal Stability 13 Physical Properties 15 Low Cycle Fatigue 17 Welding 18 Heat Treatment and Fabrication 22 Health and Safety 25 Service Center Information 27 H-3173 TYPICAL APPLICATIONS HAYNES® 282® alloy is designed for applications in engines for aircraft. HAYNES® 282® alloy is designed for the transition sections and other hot-gas-path components in land-based gas turbines. HAYNES® 282® alloy 2 ©2008 Haynes International, Inc. PRINCIPAL FEATURES Excellent High Temperature Strength HAYNES® 282® alloy is a new, wrought, gamma-prime strengthened superalloy developed for high temperature structural applications, especially those in aero and land-based gas turbine engines. It possesses a unique combination of creep strength, thermal stability, weldability, and fabricability not found in currently available commercial alloys. The new alloy has excellent creep strength in the temperature range of 1200 to 1700°F (649 to 927°C), surpassing that of Waspaloy alloy, and approaching that of R-41 alloy. Easily Fabricated This high level of creep strength in HAYNES 282 alloy has been attained at a relatively low volume fraction of the strengthening gamma-prime phase, resulting in outstanding resistance to strain-age cracking (normally a problem with superalloys in this creep strength range). Additionally, slow gamma-prime precipitation kinetics allow for the alloy to have excellent ductility in the as-annealed condition. Consequently, HAYNES 282 alloy exhibits superior weldability and fabricability. Product Forms HAYNES 282 alloy is designed for use in the form of plate, sheet, strip, foil, billet, bar, wire welding products, pipe, and tubing. Heat Treatment HAYNES 282 alloy is provided in the solution-annealed condition, in which it is readily formable. The typical solution- annealing temperature is in the range of 2050 to 2100°F (1121 to 1149°C). After component fabrication, a two-step age hardening treatment is required to put the alloy into the high-strength condition. The treatment includes 1850°F (1010°C) / 2 hours / AC (air cool) + 1450°F (788°C) / 8 hours / AC. Applications The features of HAYNES 282 alloy make it suitable for critical gas turbine applications, such as sheet fabrications, seamless and flash butt-welded rings, and cases found in compressor, combustor, and turbine sections. In augmented aircraft gas turbines, the new alloy will be useful for exhaust and nozzle components. In land-based gas turbines, HAYNES 282 alloy is a good candidate for transition sections and other hot-gas-path components. Nominal Chemical Composition, Weight % Ni Cr Co Mo Ti Al Fe Mn Si C B 57** 20 10 8.5 2.1 1.5 1.5* 0.3* 0.15* 0.06 0.005 * Maximum ** Nickel as balance 3 HAYNES® 282® alloy CREEP AND STRESS-RUPTURE STRENGTH HAYNES 282 alloy possesses exceptional creep strength in the temperature range 1200-1700°F (649-927°C). For example, it has superior strength to 263 alloy at all temperatures in this range in terms of both 1% creep and rupture. Despite the exceptional fabricability of 282 alloy, it compares well to less fabricable alloys designed for high creep strength. For example, its rupture strength is equivalent to the well-known, but less fabricable, Waspaloy alloy at the lower temperatures in this range and actually has a distinct advantage at the higher end of the temperature range. In terms of 1% creep strength, 282 alloy is superior to Waspaloy alloy across the entire temperature range. At temperatures of 1500-1700°F (816-927°C), 282 alloy has creep strength equivalent to even that of R-41 alloy, an alloy designed for excellent creep strength, but notorious for poor fabricability. Creep Strength of Various Superalloys in the Temperature Range 1500-1700ºF (816-927ºC) (Sheet Products) Larson-Miller Parameter (K x 10-3, C = 20) 24 25 26 27 28 30 20 100 10 9 8 7 6 5 4 Stress (ksi) 3 282® alloy Stress (MPa) R-41 alloy 2 Waspaloy alloy 263 alloy 10 1 42 44 46 48 50 52 Larson-Miller Parameter (°R x 10-3, C = 20) HAYNES® 282® alloy 4 Comparative Creep-Rupture Properties of Gamma-Prime Strengthened Alloys* (Sheet) Test Temperature Waspaloy Property 263 Alloy R-41 Alloy 282® Alloy °F °C Alloy 1200 649 75 (517) 105 (724) 81 (558) — Stress-to-Produce 1300 704 54 (372) 75 (517) 63 (434) 72 (496) 1% Creep 1400 760 37 (255) 53 (365) 41 (283) 48 (331) in 100 h 1500 816 22 (152) 32 (221) 25 (172) 32 (221) ksi (MPa) 1600 871 11 (76) 17 (117) 15 (103) 18 (124) 1700 927 6 (41) 8 (55) 6 (41) 9 (62) 1200 649 58 (400) 84 (579) 67 (462) 79 (545) Stress-to-Produce 1300 704 41 (283) 59 (407) 46 (317) 53 (365) 1% Creep 1400 760 25 (172) 34 (234) 28 (193) 35 (241) in 1000 h 1500 816 12 (83) 18 (124) 16 (110) 21 (145) ksi (MPa) 1600 871 6 (41) 9 (62) 7 (48) 10 (69) 1700 927 3 (21) 5 (34) 3 (21) 5 (34) 1200 649 77 (531) 110 (758) 92 (634) — 1300 704 60 (414) 85 (586) 75 (517) 75 (517) Stress-to-Produce 1400 760 42 (290) 63 (434) 53 (365) 56 (386) Rupture in 100 h 1500 816 25 (172) 39 (269) 32 (221) 37 (255) ksi (MPa) 1600 871 14 (97) 23 (159) 19 (131) 22 (152) 1700 927 7 (48) 13 (90) 10 (69) 12 (83) 1200 649 64 (441) 90 (621) 80 (552) 80 (552) 1300 704 45 (310) 68 (469) 58 (400) 56 (386) Stress-to-Produce 1400 760 28 (193) 43 (296) 36 (248) 38 (262) Rupture in 1000 h 1500 816 15 (103) 24 (165) 20 (138) 23 (159) ksi (MPa) 1600 871 7 (48) 13 (90) 7 (48) 12 (83) 1700 927 4 (28) 7 (48) 3 (21) 6 (41) *Age-hardened (263 alloy: 1472°F (800°C)/8h/AC, Waspaloy alloy : 1825°F (996°C)/2h/AC + 1550°F (843°C)/4h/AC + 1400°F (760°C)/16h/AC, R-41 alloy: 1650°F (899°C)/4h/AC, 282® alloy: 1850°F (1010°C)/2h/AC + 1450°F (788°C)/8h/AC) Solution Annealed* + Age Hardened** 282® Sheet Approximate Initial Stress, ksi (MPa) Test Temperature Creep To Produce Specifi ed Creep in: °F °C 100 Hours 1,000 Hours 0.5 % — 78 (538) 1200 649 1 % — 79 (545) Rupture — 80 (552) 0.5 % 70 (483) 51 (352) 1300 704 1 % 72 (496) 53 (365) Rupture 75 (517) 56 (386) 0.5 % 46 (317) 33 (228) 1400 760 1 % 48 (331) 35 (241) Rupture 56 (386) 38 (262) 0.5 % 30 (207) 18 (124) 1500 816 1 % 32 (221) 21 (145) Rupture 37 (225) 23 (159) 0.5 % 17 (117) 9.0 (62) 1600 871 1 % 18 (124) 10 (69) Rupture 22 (152) 12 (83) 0.5 % 8.3 (57) 4.2 (29) 1700 927 1 % 9.0 (62) 5.0 (34) Rupture 12 (83) 6.0 (41) 0.5 % 3.6 (25) — 1800 982 1 % 4.2 (29) 1.8 (12) Rupture 5.5 (38) 2.5 (17) *2100°F (1149°C) **1850°F (1010°C)/2h/AC + 1450°F (788°C)/8h/AC 5 HAYNES® 282® alloy Solution Annealed* + Age Hardened** 282® Plate Approximate Initial Stress, ksi (MPa) Test Temperature Creep To Produce Specifi ed Creep in: °F °C 100 Hours 1,000 Hours 10,000 Hours 0.5 % — 81 (558) — 1200 649 1 % — 82 (565) — Rupture — 85 (586) 64 (441) 0.5 % 73 (503) 53 (365) — 1300 704 1 % 75 (517) 55 (379) — Rupture 80 (552) 61 (421) 45 (310) 0.5 % 49 (338) 35 (241) — 1400 760 1 % 50 (345) 36 (248) — Rupture 57 (393) 41 (283) 27 (186) 0.5 % 32 (221) 20 (138) — 1500 816 1 % 34 (234) 22 (152) — Rupture 38 (262) 25 (172) 14 (97) 0.5 % 18 (124) 11 (76) — 1600 871 1 % 19 (131) 12 (83) — Rupture 23 (159) 14 (97) 8 (55) 0.5 % 9.4 (65) 4.8 (33) — 1700 927 1 % 10 (69) 5.2 (36) — Rupture 13 (90) 7.0 (48) 3.7 (26) 0.5 % 4.2 (29) 1.8 (12) — 1800 982 1 % 4.6 (32) 2.0 (14) — Rupture 6.2 (43) 3.6 (25) — *2075°F (1135°C) **1850°F (1010°C)/2h/AC + 1450°F (788°C)/8h/AC HAYNES® 282® alloy 6 STRAIN-AGE CRACKING RESISTANCE Resistance to strain-age cracking is a major attribute of HAYNES 282 alloy. As indicated in the chart below, 282 alloy approaches the well-known 263 alloy in this regard, and possesses much higher resistance to strain-age cracking than other nickel superalloys in its strength class (Waspaloy and R-41 alloys). Resistance to Strain-Age Cracking as Measured by the Controlled Heating-Rate Tensile (CHRT) Test Test Temperature (°C) 760 780 800 820 840 860 40 282® alloy R-41 alloy Waspaloy alloy 30 263 alloy 20 % Elongation % 10 0 1400 1450 1500 1550 1600 Test Temperature (°F) The CHRT test is an excellent measure of the resistance of gamma-prime strengthened superalloys to strain-age cracking. Samples of thickness 0.063” (1.6 mm), originally in the solution annealed condition, are heated to the test temperature at a rate of 25-30°F (14-17°C) per minute, this being representative of a typical post-weld heat treatment. Tests are performed for each alloy over a range of temperatures.
Recommended publications
  • Haynes International
    HAYNES INTERNATIONAL The Last 100 Years Acknowledgements The authors wish to thank all of the people who have helped us in researching, writing, and editing this short history of Haynes International. We are particularly grateful to Haynes International for allowing us access to historical documents, photographs, and other articles that have managed to survive over the years. Much of what we have written comes from Ralph D. Gray’s excellent book “STELLITE – A History of the Haynes Stellite Company 1912 – 1972”. This book was the source for many of the facts and stories we used in this short history. Many thanks to Michael F. Rothman for his written contributions to this book, and for the final editing of the manuscript. Edmond J. Bickel Dr. F. Galen Hodge Dale A. Kingseed Dr. Dwaine L. Klarstrom Charles J. Sponaugle July, 2012 ©2012 Haynes International, Inc. - 1 - HAYNES INTERNATIONAL The Last 100 Years INTRODUCTION Haynes International celebrates the 100th anniversary of its founding in October, 2012. Begun by Elwood Haynes, the company traces its origins back to a day in September, 1912 when Haynes learned that he would be granted patents for two of his special alloy inventions. He immediately purchased property and constructed a building to house melting furnaces for commercially producing the material he called STELLITE® alloy. By October, 1912 the “Haynes Stellite Works” was in business, with production actually underway by December. The company began with just four workers, consisting of Haynes, his wife, his brother- in-law, and his 16 year old son March. March worked evenings and Saturdays as a grinder.
    [Show full text]
  • Merrill Document Readback
    UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-K (Mark One) ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended September 30, 2011 or TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the transition period from to Commission file number 001-33288 HAYNES INTERNATIONAL, INC. (Exact name of registrant as specified in its charter) Delaware 06-1185400 (State or other jurisdiction of (I.R.S. Employer Identification No.) incorporation or organization) 1020 West Park Avenue, Kokomo, Indiana 46904-9013 (Address of principal executive offices) (Zip Code) Registrant’s telephone number, including area code (765) 456-6000 Securities registered pursuant to Section 12(b) of the Act: Title of each class Name of each exchange on which registered Common Stock, par value $.001 per share NASDAQ Global Market Securities registered pursuant to section 12(g) of the Act: None. Indicate by check mark if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. Yes No Indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act. Yes No Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days.
    [Show full text]
  • Role of Cobalt in Waspaloy
    ROLE OF COBALT IN WASPALOY G. E. Maurer L. A. Jackman J. A. Domingue Special Metals Corp., New Hartford, N.Y. 13413 Nickel was systematically substituted for cobalt in Was- paloy. M'echanical test results indicate that lower cobalt has little effect on tensile properties, but adversely affects creep rate and stress rupture life. Phase extraction studies found slight decreases in gamma prime volume fractions and in- creased M'23C6 carbide with lowes cobalt. It is suggested that changes in gamma prime volume fraction, carbide precipitation, and stacking fault energy contribute to the decrease in creep resistance. INTRODUCTION Interest in the role of specific elements in the design of nickel-base superalloys has been dramatically revitalized in the past two years. Economic and strategic considera- tions have prompted re-examination of the necessity of raw materials whose availability could be jeopardized by political unrest or resource depletion. Recently, an ele- ment of primary concern has been cobalt, which comprises from 8-19 wt.% of some of the most commonly used wrought alloys. Information on the role of cobalt in nickel-base super- alloys was found insufficient to ascertain if the specified levels of cobalt in many commercial superalloys is justi- fied. Therefore, a one variable study was initiated on the systematic replacement of cobalt by nickel in Waspaloy, which accounts for the greatest consumption of "nickel- base superalloy" cobalt. Few studies have been done on the specific reduction of cobalt in a superalloy cl.-3). The principle reference to the overall role of cobalt in wrought superalloys is by Heslop (1) who reviewed the use 43 44 / Superalloys 1980 of cobalt in Nimonic alloys.
    [Show full text]
  • HAYNES® 617 Alloy
    HAYNES® 617 alloy Principal Features HAYNES® 617 alloy (UNS N06617) is a nickel-chromium-cobalt-molybdenum alloy with a good combination of metallurgical stability, strength, and oxidation resistance at high tem- peratures. The alloy is readily formed and welded by conventional techniques. HAYNES® 617 alloy is use in applications such as gas turbines for combustion cans, ducting, and transition lines. For modern application, HAYNES® 230® alloy should be considered as a replacement. Nominal Composition Weight % Nickel: Balance Cobalt: 12.5 Chromium: 22 Molybdenum: 9 Manganese: 0.2 max. Silicon: 0.2 max. Iron: 1 Titanium: 0.3 Aluminum: 1.2 Carbon: 0.07 Boron: 0.006 max. Creep-Rupture Strength Solution annealed Sheet Approximate Initial Stress to Produce Specified Creep in Temperature Creep 10 Hours 100 Hours 1,000 Hours °F °C % ksi MPa ksi MPa ksi MPa 0.5 18.7 129 14.5 100 11 76 1400 760 1 20.5 141 15.5 107 12 83 R 33* 228* 26 179 20 138 0.5 13.2* 91* 10.2 70 7.7 53 1500 816 1 14.0* 97* 10.8 74 8.5 59 R 23.5 162 17.0 117 12.2 84 0.5 9.5 66 7.3 50 5.0* 34* 1600 871 1 10.0 69 7.7 53 5.3* 37* R 16.5 114 11.4 79 7.3 50 0.5 6.5 45 4.3 30 2.9* 20* 1700 927 1 7.4 51 4.8 33 3.2* 22* R 11.7 81 7.4 51 4.5 31 0.5 - - 2.9 20 1.7 12 1800 982 1 - - 3.3 23 1.9 13 R - - 5.2 36 2.3 16 *Significant extrapolation H-3171D © 2020 Haynes International Oxidation Resistance Comparative Oxidation Resistance in Flowing Air, 1008 Hours* 1800°F (982°C) 2000°F (1093°C) 2100°F (1149°C) 2200°F (1204°C) Average Average Average Average Average Metal Average Metal Average
    [Show full text]
  • Fiscal Year 2021 Third Quarter Results June 30, 2021 109 Years Of
    Fiscal Year 2021 Third Quarter Results June 30, 2021 109 Years of Alloy, Process, and Product Innovation FY2021 1 Forward-looking statements The information contained in this presentation, and in the oral statements made as part of the presentation, may include “forward-looking statements” within the meaning of the Private Securities Litigation Reform Act of 1995. Such statements relate to future events and expectations and involve known and unknown risks and uncertainties. You should keep in mind that any forward-looking statements made by us speak only as of the date on which we make it. Our actual results or actions may differ materially from those discussed in forward-looking statements. We have no duty to, and do not intend to, update or revise the forward-looking statements in this presentation except as may be required by law. For a summary of specific risk factors that could cause results to differ materially from those expressed in the forward looking statements, please refer to our most recent filings with the Securities and Exchange Commission, including the Company’s Annual report on Form10-K. New risks and uncertainties arise from time to time, and it is impossible for us to predict these events or how they may affect us. Copyright 2021. Presentation and contents of this presentation are copyrighted by Haynes International, Inc. All rights reserved. Copying of this presentation is forbidden without the prior written consent of Haynes International, Inc. Information in this presentation is provided without warranty of any kind, either expressed or implied, including but not limited to the implied warranties of merchantability, fitness for a particular purpose and the timeliness of the information.
    [Show full text]
  • HAYNES® 625 Alloy
    HAYNES® 625 alloy Principal Features Excellent Strength Up To 1500°F (816°C), Good Oxidation Resistance, and Good Resistance to Aqueous Corrosion HAYNES® 625 alloy (UNS N06625) is a nickel- chromium-molybdenum alloy with excellent strength from room temperature up to about 1500°F (816°C). At higher temperatures, its strength is generally lower than that of other solid-solution strengthened alloys. Alloy 625 has good oxidation resistance at temperatures up to 1800°F (982°C) and provides good resistance to aqueous corrosion, but generally not as effectively as modern HASTELLOY® corrosion-resistant alloys. Easily Fabricated HAYNES® 625 alloy has excellent forming and welding characteristics. It may be forged or otherwise hot-worked providing temperature is maintained in the range of about 1800 to 2150°F (982 to 1177°C). Ideally, to control grain size, finish hot working operations should be performed at the lower end of the temperature range. Because of its good ductility, al- loy 625 is also readily formed by cold working. However, the alloy does work-harden rap- idly so intermediate annealing treatments may be needed for complex component forming operations. In order to restore the best balance of properties, all hot- or cold-worked parts should be annealed and rapidly cooled. The alloy can be welded by both manual and automatic welding methods, including gas tungsten arc (GTAW), gas metal arc (GMAW), electron beam, and resistance welding. It exhibits good restraint welding characteristics. Heat Treatment Unless otherwise specified, wrought HAYNES® 625 alloy is normally supplied in the mill-annealed condition. The alloy is usually mill-annealed at 1925°F plus or minus 25°F (1052°C plus or minus 14°C) for a time commensurate with section thickness and rapidly cooled or water-quenched for optimum properties.
    [Show full text]
  • INCONEL® Alloy 22 (UNS N06022; W
    www.specialmetals.com INCONEL® alloy 22 (UNS N06022; W. Nr. 2.4602; NiCr21Mo14W) is a fully austenitic advanced corrosion-resistant alloy that offers resistance to both aqueous corrosion and attack at elevated temperatures. This alloy provides exceptional resistance to general corrosion, pitting, crevice corrosion, intergranular attack, and stress corrosion cracking. Alloy 22 has found numerous applications in the chemical/petrochemical processing, pollution control (flue gas desulfurization), power, marine, pulp and paper processing, and waste disposal industries. Alloy 22 is nickel-base and typically contains 22% chromium, 14% molybdenum, and 3% tungsten. Iron is normally limited to less than 3%. The alloy’s high content of chromium gives it good resistance to wet corrosion by oxidizing media (e.g., nitric acid and ferric and cupric salts). Its contents of molybdenum and tungsten give the alloy resistance to wet reducing media (e.g., sulfuric and hydrochloric acids). Alloy 22 exhibits excellent resistance to corrosive attack by seawater under stagnant and flowing conditions. At elevated temperatures, the high chromium level of INCONEL alloy 22 helps it resist oxidation, carburization, and sulfidation. Since it is nickel-base, alloy 22 resists high temperature attack by halides (e.g., chlorides and fluorides). With these attributes, the alloy is widely used to protect steel tubes and other components in coal-fired and waste-to-energy boilers. Table 1 - Limiting Chemical Composition, %, of INCONEL alloy 22 products are covered INCONEL
    [Show full text]
  • An Evaluation of High Temperature Airframe Seals for Advanced Hypersonic Vehicles
    NASA/TM—2007-215043 AIAA–2007–5743 An Evaluation of High Temperature Airframe Seals for Advanced Hypersonic Vehicles Jeffrey J. DeMange The University of Toledo, Toledo, Ohio Patrick H. Dunlap and Bruce M. Steinetz Glenn Research Center, Cleveland, Ohio Gary J. Drlik Analex Corporation, Brook Park, Ohio October 2007 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical NASA Scientific and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Officer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, • TECHNICAL TRANSLATION. English- thus providing one of the largest collections of language translations of foreign scientific and aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. Reports of completed research or a major significant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis.
    [Show full text]
  • Corrosion-Resistant Alloys and High-Temperature Alloys
    SAFETY DATA SHEET SAFETY DEPARTMENT HAYNES INTERNATIONAL, INC. 1020 WEST PARK AVENUE Corrosion-resistant Alloys P.O. BOX 9013 KOKOMO, INDIANA 46904-9013 (USA) and NORTH AMERICA (NA) INFORMATION: 1-765-456-6714 High-temperature Alloys EUROPE (EU) INFORMATION: 011-44-161-230-7777 SDS IDENTIFICATION NUMBER PREVIOUS EMERGENCY PHONE NUMBERS REVISION DATE January 20, 2016 HAYNES: 1-765-456-6894 H2071-11 (24-hour contact for Health & Transportation Emergencies) This replaces H2071-10 DATE REVISED January 30, 2019 This Safety Data Sheet (SDS) provides information on a specific group of manufactured metal products. Since these metal products share a common physical nature and constituents, the data presented are applicable to all alloys identified. This document was prepared to meet the requirements of those jurisdictions that have adopted the Globally Harmonized System (GHS) of Classification and Labeling of Chemicals, and the Superfund Amendments and Reauthorization Act of 1986. HAYNES® and HASTELLOY® are registered trademarks of Haynes International, Inc. 1. PRODUCT IDENTIFICATION CHEMICAL NAME: See Section 3 for Alloy Designations CHEMICAL FAMILY: Alloy TRADE NAME: See Alloys listed in this Section FORMULA: Alloys composed of varying concentrations of elements listed in Section 3 HASTELLOY® B alloy HASTELLOY® X alloy HAYNES® 230® alloy HASTELLOY® B-2 alloy HASTELLOY® W alloy HAYNES® 233™ alloy HASTELLOY® B-3® alloy HAYNES® GTD 222 alloy HAYNES® 242® alloy HASTELLOY® C-22® alloy HAYNES® HR-120® alloy HAYNES® 244® alloy HASTELLOY® C-22HS® alloy
    [Show full text]
  • Weld Cracking of Precipitation Hardening Ni-Based Superalloys
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Weld Cracking of Precipitation Hardening Ni-based Superalloys Investigation of repair welding characteristics and susceptibility towards strain age cracking Fabian Hanning Department of Industrial and Materials Science CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden i Weld Cracking of Precipitation Hardening Ni-based Superalloys Investigation of repair welding characteristics and susceptibility towards strain age cracking Fabian Hanning ISBN 978-91-7905-258-4 © Fabian Hanning, 2020 Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 4725 ISSN 0346-718X Department of Industrial and Materials Science Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone + 46 (0)31-772 1000 Printed by Chalmers digitaltryck Gothenburg, Sweden 2020 ii Weld Cracking of Precipitation Hardening Ni-based Superalloys Investigation of repair welding characteristics and susceptibility towards strain age cracking Fabian Hanning Department of Industrial and Materials Science Chalmers University of Technology Abstract High temperature resistance and strength requirements make nickel-based superalloys the material of choice for the hot section of aero engines. Fabrication in terms of combining wrought and cast parts in the manufacturing of hot structural components enables component optimisation via the use of wrought high-strength parts, where geometrical constraints allow, and cast parts to produce complex geometries. Such an approach requires that the materials involved are weldable. Due to the complex microstructure of precipitation hardening nickel-based superalloys, welding comes with the risk of weld cracking, more specifically solidification cracking, heat affected zone (HAZ) liquation cracking and strain age cracking (SAC). While the first two types require a liquid phase to be present, SAC occurs during heating to post-weld heat treatment, in which age-hardening reactions coincide with the relaxation of weld residual stresses.
    [Show full text]
  • 26Jan200610413109
    26JAN200610413109 January 27, 2012 To our stockholders, In fiscal 2011, our end markets continued to strengthen. As a result of the strengthening of our core end markets and the Company’s continuous improvement efforts, we were able to: • increase revenue to $542.9 million, from $381.5 million in fiscal 2010; • more than triple net income to $31.1 million, from $8.9 million in fiscal 2010; • improve inventory turns to 1.5 from 1.04 in the prior year; • invest over $14.0 million in capital upgrades and additions to our plants to meet the needs of our customers; • expand gross margin to 17.3%, from 14.1% in fiscal 2010; • finish the year with over $180.0 million in available liquidity, which includes $60.1 million in cash and no debt; and • increase our quarterly cash dividend 10% to $0.22 per share of outstanding common stock. As mentioned in several of our investor updates and earnings calls, we recognize the fragility of the world economy, but we are also optimistic about both the short- and long-term prospects for our core markets and the new markets we are developing. The Right Products for The Right Markets Our business in aerospace products improved 47.1% over fiscal 2010 to $203.6 million. HAYNES↧ 282 alloy continued to gain traction in qualification trials for new commercial and military platforms, and our core strategy of service via cut parts continues to solidify our position in customers’ supply chains. In addition, Boeing and Airbus announced aggressive production ramp-ups which are expected to drive demand in aero-engines and aero-structures over the next decade.
    [Show full text]
  • 5JAN201722042080 January 26, 2018
    5JAN201722042080 January 26, 2018 To My Fellow Stockholders: After a challenging fiscal 2017 characterized by competitive pricing and low volume in some of our key markets, order entry has gained momentum through the beginning of fiscal 2018. We are hopeful that this is indicative of returning strength in our end markets. Aerospace, buoyed by the ramp-up of the new engine platforms, along with better activity in chemical processing special projects, are leading the way at this point, and we expect these markets, along with our tolling business and smaller industrial markets like heat treating and energy, to continue to expand as we move deeper into 2018. During fiscal 2017 and early fiscal 2018, we completed our major capital expenditure projects. During this cycle, we rebuilt, expanded, and improved our operating facilities and capabilities. Supporting our growth in aerospace, we upgraded and expanded our tubular products facilities, allowing us to ship a record volume of tubular products in 2017. In our flat roll operations, we have completed our capital investments in heat-treating, rolling and shape correction operations, particularly a significant expansion in our cold-rolling and finishing capabilities, which is expected to help us meet increasing demand in the aerospace market. We also completed the implementation of our new global IT system, migrating a myriad of discrete systems into a single, global operating platform enhancing our ability to monitor and optimize worldwide manufacturing and distribution operations. Supporting our service and value-added operations, we expanded our operations in LaPorte, Indiana and Openshaw, England in order to more efficiently meet the needs of our key markets.
    [Show full text]