Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 12, 16701–16761, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/16701/2012/ Chemistry doi:10.5194/acpd-12-16701-2012 and Physics © Author(s) 2012. CC Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. Cloud-resolving chemistry simulation of a Hector thunderstorm K. A. Cummings1, T. L. Huntemann1,*, K. E. Pickering2, M. C. Barth3, W. C. Skamarock3, H. Holler¨ 4, H.-D. Betz5, A. Volz-Thomas6, and H. Schlager4 1Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA 2Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA 3NCAR Earth System Laboratory, National Center for Atmospheric Research, Boulder, CO, USA 4Deutsches Zentrum fur¨ Luft- und Raumfahrt, Oberpfaffenhofen, Germany 5Department of Physics, University of Munich, Munich, Germany 6Institut fur¨ Chemie- und Klimaforschung, Forschungszentrum Julich,¨ Julich,¨ Germany *now at: National Weather Service, Silver Spring, MD, USA Received: 30 April 2012 – Accepted: 24 May 2012 – Published: 6 July 2012 Correspondence to: K. A. Cummings (
[email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 16701 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract Cloud chemistry simulations are performed for a Hector storm observed on 16 Novem- ber 2005 during the SCOUT-O3/ACTIVE campaigns based in Darwin, Australia, with the primary objective of estimating the average production of NO per lightning flash 5 during the storm which occurred in a tropical environment.