V·M·I University Microfilms International a Bell & Howell Informal Ion Company 300 North Zeeb Road

Total Page:16

File Type:pdf, Size:1020Kb

V·M·I University Microfilms International a Bell & Howell Informal Ion Company 300 North Zeeb Road Near-infrared properties of quasar and Seyfert host galaxies. Item Type text; Dissertation-Reproduction (electronic) Authors McLeod, Kim Katris. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/09/2021 16:45:20 Link to Item http://hdl.handle.net/10150/186821 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely. event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. V·M·I University Microfilms International A Bell & Howell Informal Ion Company 300 North Zeeb Road. Ann Arbor. M148106-1346 USA 313/761-4700 800:521-0600 Order Number 9502621 Near-infrared properties of quasar and Seyfert host galaxies McLeod, Kim Katris, Ph.D. The University of Arizona, 1994 V·M·I 300 N. Zeeb Rd. Ann Arbor. MI 48106 NEAR-INFRARED PROPERTIES OF QUASAR AND SEYFERT HOST GALAXIES by Kim Katris McLeod A Dissertation Submitted to the Faculty of the DEPARTMENT OF ASTRONOMY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1994 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Final Examination Committee, we certify that we have read the dissertation prepared by Kim Katris McLeod ~~~==~=-~~~--------------------- entitled Near-infrared Properties of Quasar and Seyfert Host Galaxies and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of ~D~o~c~t~o~r~o~f~P~h=i=l~o~s~o~ph~y ______________________ Date 7/(3/1<1- Date /Of~q .Jwt; J-3 Date-rM9" Dat6 Date Final approval and acceptance of this dissertation is contingent upon the cand~date's submission of the final copy of the dissertation to the Graduate College. D'fsserat :f0111ITre c to r Date George H. Rieke 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: __~..;...IL_;'....:..t{'_c....;.. "&....... 1..... -0=12"-- __ 4 ACKNOWLEDGMENTS This work benefitted from the contributions of many people. I am grateful to T. Boroson, J. Bechtold, and D. Friedli for useful discussions; J.B. Hutchings for helpful comments on Chapter 2; D. Williams and W. Latter for observing some of the objects; Tad Morgan for assistance with data reduction; and the 90"operators. Thanks to M. Rieke and E. Montgomery for providing and maintaining the excellent infrared camera. Data processing made extensive use of IRAF. This material is based upon work supported by the NSF (Grant AST-9116442 and a Graduate Student Fellowship). Particular thanks go to the members of my committee for valuable comments and questions, and for taking it easy on me! I thank Chris Impey; Craig (Cra-ha-ha-haig) Foltz; and especially Johnblack, whose unique talent for asking well-thought-out questions has taught and amazed me for the past 6 years. I never would have made it to Arizona without the help of Jim Houck; I thank him for giving me my first astronomy job. I was lured to Tucson by the excellent group of grad students who came before me, and I thank them all for showing me how it is done. Special recognition goes to: "Caveman" Doug Kelly for friendship, constant enthusiasm, and 5-ball inspiration; Dennis Zaritsky (yo-ho, yo-ho ... ) and Hans-Walter Rix (also M.B.) for good advice and friendship on and off the soccer field-you guys are truly the best; and Joe Haller for Zinger breaks and office chats. For making classes bearable, I thank my classmates Bob, Sally, Karen, and Kim. Gracias Dante Minniti, for teaching me soccer and a FEW words of Spanish, for being a great officemate, and for being a dude. I am grateful for the friendship of grads who came after me, including Dougw (Did you know he's a blackbelt?), The Patmeister, neighbors Anne, Tim, and Dspray, and my many officemates over the years. I would never have made it through the last few months without the juggling companionship of Chris and Chad. Juggle on, guys! Heartfelt thanks to Jeff "The Ring Guy" Reggie, who has been a true friend sinc~ first we met at Fuertes Observatory, Cornell, 10 years ago. I thank all the faculty and staff of Steward for making this a great place to be. Special thanks to the lunch bunch and their families: Roc, Bill, Gary B., John. I am very sorry to be leaving Jill Bechtold and Ed, Julia, and C.J. Olszewski; I thank them for letting us be part of their family while we were here . .George Rieke. George, George, George ... What can I say in order to properly thank you? It has been an honor and a pleasure to be your student. My only regret is that I didn't find you sooner. Thank you for taking care of me, science-wise and otherwise .. .I'll miss you very much. 5 DEDICATION This dissertation is dedicated to my family with all of my love To my dad Jack, 1933-1979, for turning my gaze upwards To my mom Ar, for keeping hers there in the face of adversity To my brother Jeff, for putting it to words To my grandma Helen, for always smiling To the Crowes and company, for the music, the beach, and the fun And to Brian, my sweetheart and my best friend 6 Contents LIST OF FIGURES 9 LIST OF TABLES 10 ABSTRACT ... 11 1 BACKGROUND . .. 13 1.1 Introduction................ 13 1.2 Fifty Years of AGN Host-Galaxy Studies 14 1.2.1 Quasar Host-Galaxy Imaging 16 1.2.2 Seyfert Galaxy Imaging ... 18 1.3 Host-Galaxy Studies with Infrared Arrays 18 1.4 This Work . 20 2 THE HOST GALAXIES OF LOW-LUMINOSITY QUASARS. 22 2.1 Introduction . ...... 23 2.2 Observations .. 23 2.3 Data Reduction . 24 2.3.1 Image Reduction 24 2.3.2 Profile Extraction . 27 2.3.3 Profile Fitting . 27 2".4 Results ... 34 2.5 Discussion . 38 2.5.1 Disk Fits .. 38 7 2.5.2 Galaxy Ellipticities . 39 2.5.3 Comparison to CCD Studies . 40 2.5.4 Galaxy Mergers . 42 2.5.5 Comparison to Other Near-IR Studies 44 2.6 Summary .., . 45 3 THE HOST GALAXIES OF HIGH-LUMINOSITY QUASARS. 46 3.1 Introduction. 47 3.2 Observations. 47 3.3 Data Reduction 48 3.3.1 Image Reduction 48 3.3.2 Point Source Removal 53 3.4 Results .. 56 3.5 Discussion 60 3.5.1 Galaxy Magnitudes . 60 3.5.2 Interactions .... 62 3.5.3 Galaxy Ellipticities 65 3.5.4 Comparison to CCD Studies . 65 3.5.5 The Jet of 3C273 67 3.6 Summary ........ 70 4 THE HOST GALAXIES OF CFA SEYFERTS . .. 71 4.1 Introduction. 71 4.2 Observations. 73 4.3 Data Reduction 75 4.4 Results..... 83 4.4.1 Seyfert Galaxy Magnitudes 83 4.4.2 Host-Galaxy Types ..... 86 8 4.4.3 Morphology 88 4.4.4 Interactions 93 5 COMPARISON OF QUASAR AND SEYFERT HOST GALAXIES . .. .... 96 5.1 Introduction . .. 97 5.2 Host-Galaxy Luminosities and Masses. 97 5.3 Ellipticities .. .. 103 5.4 Fueling the Active Nucleus. .110 5.5 Summary .. .112 6 FUTURE WORK. 114 REFERENCES . ................................ 117 9 List of Figures 2.1 H-band contour plots of low-luminosity quasars 28 2.2 H-band radial profiles of low-luminosity quasars 31 2.3 Galaxy v. nuclear absolute magnitudes for low-luminosity quasars 37 3.1 H-band contour plots of high-luminosity quasars. 50 3.2 H-band radial profiles of high-luminosity quasars.
Recommended publications
  • Marat Arakelian: Life and Scientific Activity 0.7 MB
    Communications of BAO, Vol. 66, Issue 2, 2019, pp. 112-120 Marat Arakelian: Life and Scientific Activity A. M. Mickaelian∗ NAS RA Byurakan Astrophysical Observatory (BAO), Byurakan 0213, Aragatzotn Province, Armenia Abstract We review the life and scientific activity of one of the outstanding Armenian astronomers Marat Arakelian (1929-1983). Arakelian was one of the prominent Byurakan astronomers, the author of famous Arakelian galaxies, which at present are target for many-sided studies with ground-based and space telescopes. Arakelian is known as a distinguished specialist in the theoretical astrophysics and extragalactic astronomy. Keywords: active galaxies, AGN, Starburst Galaxies, quasars, Seyfert galaxies, LINERs Introduction Prof. Arakelian is one of the prominent Byurakan astronomers, the author of famous Arakelian galaxies, which at present are target for many-sided studies with ground-based and space telescopes. Arakelian is known as a distinguished specialist in the theoretical astrophysics and extragalactic as- tronomy. Life and Activities Marat Arsen Arakelian was born on January 15, 1929, in Goris, Armenia, USSR. He studied at the Physical-Mathematical Department of the Yerevan State University (YSU) and graduated from ∗[email protected], Corresponding author A. M. Mickaelian 112 DOI: 10.52526/25792776-2019.66.2-112 Marat Arakelian: Life and Scientific Activity it in 1951, among the first students specialized on Astrophysics. He was directed to the Byurakan Astrophysical Observatory (BAO), where he worked first as assistant astronomer, and later as junior research associate. Soon he became a postgraduate student at the Leningrad State University (LSU, presently, St. Petersburg), finished the studies in 1955, and in 1956 successfully passed his Ph.D.
    [Show full text]
  • Radio Investigations of Clusters of Galaxies
    • • RADIO INVESTIGATIONS OF CLUSTERS OF GALAXIES a study of radio luminosity functions, wide-angle head-tailed radio galaxies and cluster radio haloes with the Westerbork Synthesis Radio Telescope proefschrift ter verkrijging van degraad van Doctor in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit te Leiden, op gezag van de Rector Magnificus Or. D.J. Kuenen, hoogleraar in de Faculteit der Wiskunde en Natuurwetenschappen, volgens besluit van het College van Dekanen te verdedigen op woensdag 20 december 1978 teklokke 15.15 uur door Edwin Auguste Valentijn geboren te Voorburg in 1952 Sterrewacht Leiden 1978 elve/labor vincit - Leiden Promotor: Prof. Dr. H. van der Laan aan Josephine aan mijn ouders Cover: Some radio contours (1415 MHz) of the extended radio galaxies NGC6034, NGC6061 and 1B00+1SW2 superimposed to a smoothed galaxy distribution (number of galaxies per unit area, taken from Shane) of the Hercules Superoluster. The 90 % confidence error boxes of the Ariel VandUHURU observations of the X-ray source A1600+16 are also included. In the region of overlap of these two error boxes the position of a oD galaxy is indicated. The combined picture suggests inter-galactic material pervading the whole superaluster. CONTENTS CHAPTER 1 GENERAL INTRODUCTION AND SUMMARY 9 PART 1 OBSERVATIONS OF THE COI1A CLUSTER AT 610 MHZ 15 CHAPTER 2 COMA CLUSTER GALAXIES 17 Observation of the Coma Cluster at 610 MHz (Paper III, with W.J. Jaffe and G.C. Perola) I Introduction 17 II Observations 18 III Data Reduction 18 IV Radio Source Parameters 19 V Optical Data 20 VI The Radio Luminosity Function of the Coma Cluster Galaxies 21 a) LF of the (E+SO) Galaxies 23 b) LF of the (S+I) Galaxies 25 c) Radial Dependence of the LF 26 VII Other Properties of the Detected Cluster Galaxies 26 a) Spectral Indexes b) Emission Lines VIII The Central Radio Sources 27 a) 5C4.85 = NGC4874 27 b) 5C4.8I - NGC4869 28 c) Coma C 29 CHAPTER 3 RADIO SOURCES IN COMA NOT IDENTIFIED WITH CLUSTER GALAXIES 31 Radio Data and Identifications (Paper IV, with G.C.
    [Show full text]
  • Dust and CO Emission Towards the Centers of Normal Galaxies, Starburst Galaxies and Active Galactic Nuclei, I
    A&A 462, 575–579 (2007) Astronomy DOI: 10.1051/0004-6361:20047017 & c ESO 2007 Astrophysics Dust and CO emission towards the centers of normal galaxies, starburst galaxies and active galactic nuclei, I. New data and updated catalogue M. Albrecht1,E.Krügel2, and R. Chini3 1 Instituto de Astronomía, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile e-mail: [email protected] 2 Max-Planck-Institut für Radioastronomie (MPIfR), Auf dem Hügel 69, 53121 Bonn, Germany 3 Astronomisches Institut der Ruhr-Universität Bochum (AIRUB), Universitätsstr. 150 NA7, 44780 Bochum, Germany Received 6 January 2004 / Accepted 27 October 2006 ABSTRACT Aims. The amount of interstellar matter in a galaxy determines its evolution, star formation rate and the activity phenomena in the nucleus. We therefore aimed at obtaining a data base of the 12CO line and thermal dust emission within equal beamsizes for galaxies in a variety of activity stages. Methods. We have conducted a search for the 12CO (1–0) and (2–1) transitions and the continuum emission at 1300 µmtowardsthe centers of 88 galaxies using the IRAM 30 m telescope (MRT) and the Swedish ESO Submillimeter Telescope (SEST). The galaxies > are selected to be bright in the far infrared (S 100 µm ∼ 9 Jy) and optically fairly compact (D25 ≤ 180 ). We have applied optical spectroscopy and IRAS colours to group the galaxies of the entire sample according to their stage of activity into three sub-samples: normal, starburst and active galactic nuclei (AGN). The continuum emission has been corrected for line contamination and synchrotron contribution to retrieve the thermal dust emission.
    [Show full text]
  • Markarian Survey and Markarian Galaxies Areg M
    Multiwavelength AGN Surveys and Studies Proceedings IAU Symposium No. 304, 2013 c International Astronomical Union 2014 A. M. Mickaelian & D. B. Sanders, eds. doi:10.1017/S1743921314003147 Markarian survey and Markarian galaxies Areg M. Mickaelian Byurakan Astrophysical Observatory (BAO), Byurakan 0213, Aragatzotn province, Armenia E-mail: [email protected] Abstract. Markarian survey (or the First Byurakan Survey, FBS) was the first systematic survey for active galaxies and was a new method for search for such objects. Until now, it is the largest objective prism survey of the sky (17,000 deg2 ). It was carried out in 1965–1980 by B. E. Markarian and his colleagues and resulted in discovery of 1517 UV-excess (Markarian) galaxies. They contain many active galaxies, as well as powerful gamma-, X-ray, IR and radio sources (Mrk 180, 231, 421, 501, etc.), BCDGs (Mrk 116) and interacting/merging systems (Mrk 266, 273, etc.). They led to the classification of Seyfert galaxies into Sy1 and Sy2 and the definition of Starbursts (SB). Several catalogs of Markarian galaxies have been published (Mazzarella & Balzano 1986; Markarian et al. 1989; Bicay et al. 1995; Petrosian et al. 2007) and they are accessible in all corresponding databases. Markarian survey also served as a basis for search for UVX stellar objects (including QSOs and Seyferts), late-type stars and optical identification of IR sources. At present the survey is digitized and DFBS database is available. I will review the main characteristics of the Markarian survey, its comparison with other similar surveys and the importance of Markarian galaxies in modern astrophysics. Keywords.
    [Show full text]
  • Servatory, the University of Arizona (Tucson, Arizona)
    Investigation of the Cancer Cluster of Galaxies Item Type text Authors Tifft, W. G.; Jewsbury, C. P.; Sargent, T. A. Citation APJ 185: 115-119 (1973) Publisher Steward Observatory, The University of Arizona (Tucson, Arizona) Rights Copyright © All Rights Reserved. Download date 24/09/2021 14:33:29 Link to Item http://hdl.handle.net/10150/627247 iVilli /YWVV i'M/ W4W ///VV,W///////W/W/V//VYiiiiW/A. /VY/ Ae// WA/M/ iiiJW/ A// W//ViiiiiiiiiiiiiW//WV/A,WVWVAi YVWYZ///A VY:eAeW/VMA,WV,"/A ie/ZAI VW"/iiiii REPRINTS OF THE STEWARD O . SERVATORY THE UNIVERSITY OF ARIZONA TUCSON, ARIZONA 85721, U.S.A. //, / /,,, / /, /, / / // // /,,, / // / / // /, /, /,,, / / //, / / / // /, / /, // / / /, / / / / /, // /// / / / // / / / / // / / / /,,,, / // / / / / / / / /, / // / / /,,,, / / //, / /, /, //, /, / /, / / /, /,/ // // // / /, /,,,,,, / / 4 4/ A A A A , PREPRINT NO. 58 INVESTIGATION OF THE CANCER CLUSTER OF GALAXIES W. G. Tifft, C. P. Jewsbury, and T. A. Sargent Steward Observatory University of Arizona Tucson, Arizona 85721 Received 1973 April ABSTRACT Redshifts for nine galaxies in the center of the Cancer cluster are reported. Four show emission lines and one of these galaxies is a high excitation peculiar object showing a distorted dust lane and "jet" or edge -on disc structure. A conventional virial theorem analysis of the cluster indicates a total cluster mass near 1014Mo and suggests that the usual instability problem found in galaxy clusters is present. INTRODUCTION The Cancer cluster of galaxies has been described by Zwicky (1957) as a spherically symmetric, small to medium size aggregation of appar- ent diameter 7° with 300 members in the magnitude range 13.8<m <18.2. This paper contains the results of a spectroscopic investigation of nine galaxies in the central region of the cluster and a discussion of other data available in the region.
    [Show full text]
  • The Seyfert Galaxy Population
    FIELD GALAXIES MARKARIAN GALAXIES OPTICALLY SELECTED^ QUASARS (LOCAL! KVKRT MF.rRS A/1 INI S-mf—8648 THE SEYFERT GALAXY POPULATION a radio survey; luminosity functions; related objects THE SEYFERT GALAXY POPULATION a radio survey; luminosity functions; related objects proefschrift ter verkrijging van de graad van Doctor in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit te Leiden, op gezag van de Rector Magnificus Dr. AAH. Kassenaar, hoogleraar in de Faculteit der Geneeskunde, volgens besluit van het College van Dekanen te verdedigen op maandag 14 juni 1982 te klokke 14.15 uur door Evert Johan Alexander Meurs geboren te Amsterdam in 1950 Sterrewacht Leiden 1982 Beugelsdijk Leiden B.V. r Promotor: Prof. Dr. H. van der Laan Referenten: Prof. Dr. H.C. van de Hulst Dr. A.G. de Bruyn Voor mijn noeder, in herinnering, en voor Wouter TABLE OF CONTENTS CHAPTER I INTRODUCTION AND SYNOPSIS page 1. Seyfert galaxies 2. Contents of this thesis CHAPTER II OPTICAL POSITIONS OF SEYFERT GALAXIES 15 1. Introduction 2. Accurate Optical Positions of Seyfert Galaxies A.S.Wilson and E.J.A. Meurs, 1978, As iron.As trophys. Suppl.Ser. 33_,407 3. Further measurements CHAPTER III A RADIO SURVEY OF SEYFERT GALAXIES 25 1. A 1415 MHz Survey of Seyfert and Related Galaxies-II E.J.A. Meurs and A.S. Wilson, 1981, Astron.Astrophys. Suppl.Ser. 45,99 2. A 14)5 MHz Survey of Seyfert and Related Galaxies-III (In collaboration with A.S. Wilson.) CHAPTER IV LUMINOSITY FUNCTIONS OF SEYFERT GALAXIES 57 1. Introduction 2. Observational data 3. The optical luminosity function of Seyfert galaxies 4.
    [Show full text]
  • Annual Report 2013 E.Indd
    2013 ANNUAL REPORT NATIONAL RADIO ASTRONOMY OBSERVATORY 1 NRAO SCIENCE NRAO SCIENCE NRAO SCIENCE NRAO SCIENCE NRAO SCIENCE NRAO SCIENCE NRAO SCIENCE 493 EMPLOYEES 40 PRESS RELEASES 462 REFEREED SCIENCE PUBLICATIONS NRAO OPERATIONS $56.5 M 2,100+ ALMA OPERATIONS SCIENTIFIC USERS $31.7 M ALMA CONSTRUCTION $11.9 M EVLA CONSTRUCTION A SUITE OF FOUR WORLDCLASS $0.7 M ASTRONOMICAL OBSERVATORIES EXTERNAL GRANTS $3.8 M NRAO FACTS & FIGURES $ 2 Contents DIRECTOR’S REPORT. 5 NRAO IN BRIEF . 6 SCIENCE HIGHLIGHTS . 8 ALMA CONSTRUCTION. 26 OPERATIONS & DEVELOPMENT . 30 SCIENCE SUPPORT & RESEARCH . 58 TECHNOLOGY . 74 EDUCATION & PUBLIC OUTREACH. 80 MANAGEMENT TEAM & ORGANIZATION. 84 PERFORMANCE METRICS . 90 APPENDICES A. PUBLICATIONS . 94 B. EVENTS & MILESTONES . 118 C. ADVISORY COMMITTEES . .120 D. FINANCIAL SUMMARY . .124 E. MEDIA RELEASES . .126 F. ACRONYMS . .136 COVER: The National Radio Astronomy Observatory Karl G. Jansky Very Large Array, located near Socorro, New Mexico, is a radio telescope of unprecedented sensitivity, frequency coverage, and imaging capability that was created by extensively modernizing the original Very Large Array that was dedicated in 1980. This major upgrade was completed on schedule and within budget in December 2012, and the Jansky Very Large Array entered full science operations in January 2013. The upgrade project was funded by the US National Science Foundation, with additional contributions from the National Research Council in Canada, and the Consejo Nacional de Ciencia y Tecnologia in Mexico. Credit: NRAO/AUI/NSF. LEFT: An international partnership between North America, Europe, East Asia, and the Republic of Chile, the Atacama Large Millimeter/submillimeter Array (ALMA) is the largest and highest priority project for the National Radio Astronomy Observatory, its parent organization, Associated Universities, Inc., and the National Science Foundation – Division of Astronomical Sciences.
    [Show full text]
  • Cover Illustration by JE Mullat the BIG BANG and the BIG CRUNCH
    Cover Illustration by J. E. Mullat THE BIG BANG AND THE BIG CRUNCH From Public Domain: designed by Luke Mastin OBSERVATIONS THAT SEEM TO CONTRADICT THE BIG BANG MODEL WHILE AT THE SAME TIME SUPPORT AN ALTERNATIVE COSMOLOGY Forrest W. Noble, Timothy M. Cooper The Pantheory Research Organization Cerritos, California 90703 USA HUBBLE-INDEPENDENT PROCEDURE CALCULATING DISTANCES TO COSMOLOGICAL OBJECTS Joseph E. Mullat Project and Technical Editor: J. E. Mullat, Copenhagen 2019 ISBN‐13 978‐8740‐40‐411‐1 Private Publishing Platform Byvej 269 2650, Hvidovre, Denmark [email protected] The Postulate COSMOLOGY THAT CONTRADICTS THE BIG BANG THEORY The Standard and The Alternative Cosmological Models, Distances Calculation to Galaxies without Hubble Constant For the alternative cosmological models discussed in the book, distances are calculated for galaxies without using the Hubble constant. This proc‐ ess is mentioned in the second narrative and is described in detail in the third narrative. According to the third narrative, when the energy den‐ sity of space in the universe decreases, and the universe expands, a new space is created by a gravitational transition from dark energy. Although the Universe develops on the basis of this postulate about the appear‐ ance of a new space, it is assumed that matter arises as a result of such a gravitational transition into both new dark space and visible / baryonic matter. It is somewhat unimportant how we describe dark energy, call‐ ing it ether, gravitons, or vice versa, turning ether into dark energy. It should be clear to everyone that this renaming does not change the es‐ sence of this gravitational transition.
    [Show full text]
  • 2021 the Best of the Rest of the Advanced Observing Programs II
    The Texas Star Party - Advanced Observing Program - 2021 The Best of the Rest of the Advanced Observing Programs This year, 2021 gets us back under the stars at night, but the star party functions are conducted virtually as the in- person gathering at the Prude Ranch has been cancelled due to Covid-19. This year’s Advanced Observing Program will be conducted from an observing site of your choosing - Details will follow below. The observing program is a continuation of the twentieth year of the advanced visual observing programs of the Texas Star Party. Normally I would not present one, and certainly not two “Best-of” programs as they only cover ground previously trodden, but two years ago I got talked into it and everybody seemed to enjoy the variety of targets presented. Therefore, for this year’s abbreviated star party I am going with the Best of the Rest, of the Advanced Observing programs, or as some would say, The Best of the Advanced Observing Programs - Part II. This year highlighted are 40 of some of the brighter and more interesting objects that have been listed over the previous years. This is - by far - the EASIEST Advanced TSP list ever published, and will provide some “eye-candy” as a reward for those of you who may have experienced “retinal torture” in the past. With just a little extra effort and a good sky, an advanced observer may be able to visually see ALL of the objects using only a modest aperture telescope. In planning your observations, pay attention to both the listed magnitudes and the object size, which will give an indication of the surface brightness of each object.
    [Show full text]
  • Isaac Newton Institute of Chile in Eastern Europe and Eurasia Casilla 8-9, Correo 9, Santiago, Chile E-Mail: [email protected] Web-Address
    1 Isaac Newton Institute of Chile in Eastern Europe and Eurasia Casilla 8-9, Correo 9, Santiago, Chile e-Mail: [email protected] Web-address: www.ini.cl The Isaac Newton Institute, ͑INI͒ for astronomical re- law obtaining significantly different slopes, down to the last search was founded in 1978 by the undersigned. The main reliable magnitude bin, i.e. where completeness drops below office is located in the eastern outskirts of Santiago. Since 50%. The slope of the internal annulus is flatter than the 1992, it has expanded into several countries of the former outer indicating the presence of different mass distributions Soviet Union in Eastern Europe and Eurasia. at different radial distances. This is a clear mark of mass As of the year 2003 the Institute is composed of fifteen segregations, as expected in dinamically relaxed systems as Branches in nine countries. ͑see figure on following page͒. GCs; These are: Armenia ͑20͒, Bulgaria ͑26͒, Crimea ͑29͒, Kaza- 4.- In order to further clarify the situation, we applied two khstan ͑17͒, Kazan ͑12͒, Kiev ͑11͒, Moscow ͑22͒, Odessa different mass-luminosity relations from the models of Mon- ͑34͒, Petersburg ͑31͒, Poland ͑13͒, Pushchino ͑23͒, Special talvan et al. ͑2000͒ and Baraffe et al. ͑1997͒, for two differ- Astrophysical Observatory, ‘‘SAO’’ ͑49͒, Tajikistan ͑9͒, ent metallicities, ͓Fe/H͔ϭϪ1.5 and ͓Fe/H͔ϭϪ2.0. The ͑ ͒ ͑ ͒ Uzbekistan 24 , and Yugoslavia 22 . The quantities in pa- two models, although very similar, give slightly different rentheses give the number of scientific staff, the grand total slopes. Both, however, confirm the difference in slopes be- of which is 342 members.
    [Show full text]
  • The Astrophysical Journal, 388:310-327,1992 April 1
    .310K The Astrophysical Journal, 388:310-327,1992 April 1 © 1992. The American Astronomical Society. All rights reserved. Printed in U.S.A. .388. 1992ApJ. THE INTEGRATED SPECTRA OF NEARBY GALAXIES: GENERAL PROPERTIES AND EMISSION-LINE SPECTRA Robert C. Kennicutt, Jr.1 Steward Observatory, University of Arizona, Tucson, AZ 85721 Received 1991 July 29; accepted 1991 September 11 ABSTRACT This paper presents the first results from a survey of the integrated spectra of 90 nearby galaxies. Intermediate- and low-resolution spectrophotometry over the 3650-7000 Á range has been used to compile a spectral atlas of galaxies (published in a companion paper) and to investigate the systematic behavior of the emission-line spectra in normal and peculiar galaxies. The data are especially useful as a comparison sample for spectroscopic surveys of more distant galaxies. The integrated absorption- and emission-line spectra show a smooth progression with Hubble type. Most spiral and irregular galaxies exhibit detectable emission lines of Ha, [O n], [N n], [S n], and sometimes H/l and [O in]. The Ha line is the strongest emission line and is most reliable quantitative tracer of the massive star formation rate, but the [O n] line provides a good substitute in high-redshift galaxies, where Ha is inac- cessible. The H/? and [O m] lines are unsatisfactory as star formation tracers in all but the strongest emission- line galaxies, due to variations in stellar absorption and excitation, respectively. Methods for distinguishing between distant starburst galaxies and active nuclei are discussed. The new data are used to examine the statistical properties of the [O n] emission in galaxies, and to cali- brate a mean relation between [O n] luminosity and the total star formation rate.
    [Show full text]
  • ORIGINS of QUASARS and GALAXY CLUSTERS 1 Inroduction
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server ORIGINS OF QUASARS AND GALAXY CLUSTERS H. ARP Max-Planck-Institut f¨ur Astrophysik, 85741 Garching, Germany The distribution on the sky of clusters of galaxies shows significant association with relatively nearby, large, active galaxies. The pattern is that of clusters paired equidistant across a central galaxy with the apparent magnitudes and redshifts of their constituent galaxies being closely matched. The clusters and the galaxies in them tend to be strong X-ray and radio emitters and their redshifts occur at preferred redshift values. The central, low redshift galaxies often show evidence of ejection in the direction of these higher redshift clusters and the clusters often show elongation along these lines. In most of these respects the clusters resemble quasars which have been increasingly shown for the last 34 years to be similarly associated with active parent galaxies. It is argued here that, empirically, the quasars are ejected from active galaxies. They evolve to lower redshift with time, fragmenting at the end of their development into clusters of low luminosity galaxies. The cluster galaxies can be at the same distance as their lower redshift parents because they still retain a component of their earlier, quasar intrinsic redshift. 1 Inroduction The distribution on the sky of clusters of galaxies started to be catalogued about 40 years ago by George Abell and collaborators. The cores of these clusters were predominantly old stellar population E galaxies which were believed to be mostly gas free and inactive.
    [Show full text]