Trichomycterus Alterus (A Catfish, No Common Name) Ecological Risk Screening Summary

Total Page:16

File Type:pdf, Size:1020Kb

Trichomycterus Alterus (A Catfish, No Common Name) Ecological Risk Screening Summary Trichomycterus alterus (a catfish, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, December 2016 Revised, April 2017 Web Version, 4/26/2018 1 Native Range and Status in the United States Native Range From Froese and Pauly (2017): “South America: Humahuaca (Jujuy), Los Sauces River, Valle Guanchin (La Rioja) in Argentina.” Status in the United States This species has not been reported in the United States. No trade in this species has been reported in the United States. From FFWCC (2017): “Prohibited nonnative species are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities. Very limited exceptions may be made by permit from the Executive Director […] [The list of prohibited nonnative species includes] Trichomycterus alterus” 1 Means of Introductions in the United States This species has not been reported in the United States. Remarks From GBIF (2016): “BASIONYM Pygidium alterum Marini, Nichols & La Monte, 1933” 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2017): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii Subclass Neopterygii Infraclass Teleostei Superorder Ostariophysi Order Siluriformes Family Trichomycteridae Subfamily Trichomycterinae Genus Trichomycterus Species Trichomycterus alterus (Marini, Nichols and La Monte, 1933)” “Taxonomic Standing: valid” Size, Weight, and Age Range From Froese and Pauly (2017): “Max length : 9.3 cm NG male/unsexed; [de Pinna and Wosiacki 2003]” Environment From Froese and Pauly (2017): “Freshwater; benthopelagic.” 2 Climate/Range From Froese and Pauly (2017): “Subtropical, preferred ?” Distribution Outside the United States Native From Froese and Pauly (2017): “South America: Humahuaca (Jujuy), Los Sauces River, Valle Guanchin (La Rioja) in Argentina.” Introduced No introductions of this species have been reported. Means of Introduction Outside the United States No introductions of this species have been reported. Short Description From Fernández and Vari (2002): “The combination of the possession of an oval premaxilla, the presence of pelvic fins and the associated pelvic girdle, 6 to 9 branched dorsal fin rays, 11 to 14 ribs, a compressed caudal peduncle, the rounded, unpigmented region on the body anteroventral to the origin of the dorsal fin, the lack of a prominent pattern of dark pigmentation on the fins, the lack of a very thick, rugose layer of fatty tissue on the body and head, the presence of a portion of the laterosensory canal system within the sphenotic, the lack of an extensive perforation of the skin surface by ampullary organs, the lack of a dorsally directed spine on the scapulo-coracoid process, and the maximum body size of 60 mm SL in T. alterus differentiates that species from all other known members of the subfamily Trichomycterinae with the exception of T. boylei, which also has an oval premaxillae and the lack of a spine on the scapulo-coracoid process. Trichomycterus alterus differs from T. boylei in the number of precaudal vertebrae (3 to 5 vs 7 or 8, respectively), the number of principal caudal fin rays (12 vs 13, respectively), the form of the first pectoral fin ray (a distinct filament, vs developed slightly beyond fin margin, but not in form of distinct filament, respectively), the form of the maxillary barbel (distinctly expanded at the base into a bulblike region, vs not expanded basally, respectively), and the form of the teeth on the outer row of the premaxilla (straight sided incisiform, vs spatulated and distinctly distally expanded, respectively).” Biology From Fernández and Vari (2002): “Trichomycterus alterus was collected in mountainous rivers and streams that were generally 0.5-4.0 m wide and 0.2-1.0 m deep, with clear waters running over sandy and rock-pebble 3 substrates, at elevations of approximately 500-2500 m. The stomachs of two cleared-and-stained specimens of T. alterus contained dipteran larvae (Chironomidae and Ceratopogonidae), coleopterans (Elmidae), and ostracod crustaceans. The diet of autochthonous benthic macroinvertebrates in T. alterus is common to T. belensis and many congeners (Casatti and Castro, 1998; Ferriz, 1998; Fernández and Vari, 2000).” Human Uses No information available. Diseases No information available. Threat to Humans From Froese and Pauly (2017): “Harmless” 3 Impacts of Introductions This species has not been reported in the United States. The Florida Fish and Wildlife Conservation Commission has listed the parasitic catfish T. alterus as a prohibited species. 4 Global Distribution Figure 1. Known global established locations of T. alterus in Argentina. Map from Discover Life (2017). 4 5 Distribution Within the United States This species has not been reported in the United States. 6 Climate Matching Summary of Climate Matching Analysis The climate match (Sanders et al. 2014; 16 climate variables; Euclidean Distance) was high in parts of western Texas, New Mexico and Arizona, and medium in the remaining areas of the southwestern U.S. from central Texas to California and in isolated locations in Florida and Montana. All other areas of the contiguous U.S. showed low climate match. Climate 6 proportion indicated that the contiguous U.S. is a medium match overall. Proportions between 0.005 and 0.103 indicate a medium match; the Climate 6 proportion for T. alterus was 0.061. Figure 2. RAMP (Sanders et al. 2014) source map showing weather stations selected as source locations (red) and non-source locations (gray) for T. alterus climate matching in northwestern Argentina. Source locations from GBIF (2016) and Fernandez and Bize (2017). 5 Figure 3. Map of RAMP (Sanders et al. 2014) climate matches for T. alterus in the contiguous United States based on source locations reported by GBIF (2016) and Fernandez and Bize (2017). 0=Lowest match, 10=Highest match. Counts of climate match scores are tabulated on the left. The “High”, “Medium”, and “Low” climate match categories are based on the following table: Climate 6: Proportion of Climate Match (Sum of Climate Scores 6-10) / (Sum of total Climate Scores) Category 0.000≤X≤0.005 Low 0.005<X<0.103 Medium ≥0.103 High 7 Certainty of Assessment Little is known about the biology and ecology of T. alternus. No introductions of this species have been reported, so impacts of introduction remain unknown. The certainty of this assessment is low because of the lack of information available. 6 8 Risk Assessment Summary of Risk to the Contiguous United States Trichomycterus alterus is an insectivorous trichomycterid catfish native to Argentina. T. alterus has a medium climate match to the contiguous United States. It has not been introduced outside of its native range. Without being able to observe introductions in other parts of the world, it is impossible to postulate the potential impacts of introduction of T. alterus to the U.S. The Florida Fish and Wildlife Conservation Commission has listed the parasitic catfish T. alterus as a prohibited species. The overall risk posed by this species is uncertain. Assessment Elements History of Invasiveness (Sec. 3): Uncertain Climate Match (Sec. 6): Medium Certainty of Assessment (Sec. 7): Low Overall Risk Assessment Category: Uncertain 9 References Note: The following references were accessed for this ERSS. References cited within quoted text but not accessed are included below in Section 10. Discover Life. 2016. Map of Trichomycterus alterus. Discover Life. Available: http://www.discoverlife.org/mp/20m?kind=Trichomycterus+alterus. (December 2016). Fernandez, L., and J. A. Bize. 2017. Trichomycterus alterus (Marini, Nichols & La Monte, 1933) and T. corduvensis Weyenberg 1877 (Siluriformes: Trichomycteridae): new records from the High Andean Plateau. Check List 13(2):2068. Fernández, L., and R. P. Vari. 2002. New species of Trichomycterus from the Andes of Argentina with a redescription of Trichomycterus alterus (Siluriformes: Trichomycteridae). Copeia 2002(3):739-747. FFWCC (Florida Fish and Wildlife Conservation Commission). 2017. Prohibited species list. Florida Fish and Wildlife Conservation Commission, Tallahassee, Florida. Available: http://myfwc.com/wildlifehabitats/nonnatives/regulations/prohibited/. (January 2017). Froese, R., and D. Pauly, editors. 2017. Trichomycterus alterus (Marini, Nichols & La Monte, 1933). FishBase. Available: http://fishbase.org/summary/Trichomycterus-alterus.html. (April 2017). GBIF (Global Biodiversity Information Facility). 2016. GBIF backbone taxonomy: Trichomycterus alterus (Marini, Nichols & La Monte, 1933). Global Biodiversity Information Facility, Copenhagen. Available: http://www.gbif.org/species/2343116. (April 2017). 7 ITIS (Integrated Taxonomic Information System). 2017. Trichomycterus alterus (Marini, Nichols and La Monte, 1933). Integrated Taxonomic Information System, Reston, Virginia. Available: https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=682 174#null. (April 2017). Sanders, S., C. Castiglione, and M. H. Hoff. 2014. Risk Assessment Mapping Program: RAMP. U.S. Fish and Wildlife Service. 10 References Quoted But Not Accessed Note: The following references are cited within quoted text within this ERSS, but were not accessed for its preparation. They are included here to provide the reader with more information. Casatti, L., and R. M.
Recommended publications
  • Multilocus Analysis of the Catfish Family Trichomycteridae (Teleostei: Ostario- Physi: Siluriformes) Supporting a Monophyletic Trichomycterinae
    Accepted Manuscript Multilocus analysis of the catfish family Trichomycteridae (Teleostei: Ostario- physi: Siluriformes) supporting a monophyletic Trichomycterinae Luz E. Ochoa, Fabio F. Roxo, Carlos DoNascimiento, Mark H. Sabaj, Aléssio Datovo, Michael Alfaro, Claudio Oliveira PII: S1055-7903(17)30306-8 DOI: http://dx.doi.org/10.1016/j.ympev.2017.07.007 Reference: YMPEV 5870 To appear in: Molecular Phylogenetics and Evolution Received Date: 28 April 2017 Revised Date: 4 July 2017 Accepted Date: 7 July 2017 Please cite this article as: Ochoa, L.E., Roxo, F.F., DoNascimiento, C., Sabaj, M.H., Datovo, A., Alfaro, M., Oliveira, C., Multilocus analysis of the catfish family Trichomycteridae (Teleostei: Ostariophysi: Siluriformes) supporting a monophyletic Trichomycterinae, Molecular Phylogenetics and Evolution (2017), doi: http://dx.doi.org/10.1016/ j.ympev.2017.07.007 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Multilocus analysis of the catfish family Trichomycteridae (Teleostei: Ostariophysi: Siluriformes) supporting a monophyletic Trichomycterinae Luz E. Ochoaa, Fabio F. Roxoa, Carlos DoNascimientob, Mark H. Sabajc, Aléssio
    [Show full text]
  • Las Especies Del Género Trichomycterus (Siluriformes: Trichomycteridae) En Colombia
    BOLETÍN CIENTÍFICO ISSN 0123 - 3068 bol.cient.mus.hist.nat. 16 (1): 194 - 206 CENTRO DE MUSEOS MUSEO DE HISTORIA NATURAL LAS ESPECIES DEL GÉNERO TRICHOMYCTERUS (SILURIFORMES: TRICHOMYCTERIDAE) EN COLOMBIA César A. Castellanos-Morales1, Fabián Galvis2 Resumen Se presenta el listado de especies del género Trichomycterus y su distribución por sistemas hídricos en Colombia. Un total de 34 especies, fueron registradas, de las cuales, seis se encuentran en ecosistemas subterráneos. El sistema hidrográfico Magdalena, cuenta con el mayor número de especies registradas, en tanto que, para el Amazonas y el río Catatumbo, no se obtuvieron registros confirmados. Palabras clave: cavernas, diversidad, listado de especies, troglomorfos, sistemas hidrográficos. SPECIES FROM THE TRICHOMYCTERUS (SILURIFORMES: TRICHOMYCTERIDAE) GENUS IN COLOMBIA Abstract The species checklist of the Trichomycterus genus, and its distribution by hydrographic systems in Colombia are presented. A total of 34 species were registered from which, six are found in subterranean ecosystems. The Magdalena river hydrographic system has the largest number of recorded species, while the Amazon and Catatumbo rivers records confirmed were not obtained. Key words: caves, diversity, species checklist, hydrographic systems, troglomorphic. INTRODUCCIÓN a familia Trichomycteridae está representada por 41 géneros y más de 241 especies descritas, posicionándola como uno de los grupos de Siluriformes Lmás ricos y ampliamente distribuidos en aguas continentales del neotrópico (CASTELLANOS-MORALES, 2010; FERRARIS Jr., 2007; RIZZATO et al., 2011). El género Trichomycterus Valenciennes 1832, es el más diverso dentro de la familia con aproximadamente 130 especies descritas y un número importante de nuevas especies descritas anualmente (ARDILA-RODRÍGUEZ, 2011a; ARDILA-RODRÍGUEZ, 2011b; CASTELLANOS-MORALES, 2010; FERRER & MALABARBA, 2011; RIZZATO et al., 2011; SARMENTO-SOARES et al., 2011).
    [Show full text]
  • 0429DONASCIMIENTO[M.R. De Carvalho] Doi Done 2016-05-09.Fm
    Zootaxa 0000 (0): 000–000 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.0000.0.0 http://zoobank.org/urn:lsid:zoobank.org:pub:00000000-0000-0000-0000-00000000000 A new species of Trichomycterus (Siluriformes: Trichomycteridae) from the upper río Magdalena basin, Colombia LUIS J. GARCÍA-MELO1, FRANCISCO A. VILLA-NAVARRO1 & CARLOS DONASCIMIENTO2,3 1Grupo de Investigación en Zoología, Facultad de Ciencias, Universidad del Tolima, Colombia. E-mail: [email protected], [email protected] 2Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Villa de Leyva, Colombia. E-mail: [email protected] 3Corresponding author Abstract Trichomycterus tetuanensis, new species, is described from the río Tetuan, upper río Magdalena basin in Colombia. The new species is distinguished by its margin of caudal fin conspicuously emarginate, in combination with a high number of opercular odontodes (21–39), reflected externally in the correspondingly large size of the opercular patch of odontodes, 3 irregular rows of conic teeth in the upper jaw, 42–52 interopercular odontodes, 8 branchiostegal rays, 37 post Weberian vertebrae, 7 branched pectoral-fin rays, hypural 3 separated from hypural plate 4+5, and background coloration light brown with darker dots uniformly sparse on dorsum and sides of trunk. Some apomorphic characters informative for the phylogenetic affinities of the new species within Trichomycterus
    [Show full text]
  • Ecología Trófica Y Reproductiva De Trichomycterus Caliense Y Astroblepus Cyclopus (Pisces: Siluriformes) En El Río Quindio, Alto Cauca, Colombia
    Rev. Biol. Trop., 49(2): 657-666, 2001 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Ecología trófica y reproductiva de Trichomycterus caliense y Astroblepus cyclopus (Pisces: Siluriformes) en el río Quindio, Alto Cauca, Colombia César Román-Valencia Universidad del Quindio, Departamento de Biología, A.A. 460, Armenia, Quindio, Colombia. Fax: (57) 67462563; [email protected] Recibido 27-IV-2000. Corregido 9-X-2000. Aceptado 23-X-2000. Abstract: The trophic and reproductive ecology of catfish (Trichomycterus caliense and Astroblepus cyclopus) was studied in the Quindio River upper Basin, Alto Cauca, Colombia. The pH was neutral, water oxygen content high (8.4 ppm) and temperature in the habitats was 18.63 ºC; both species are nonmigratory and sympatric with four other fish species. The ovaries mature primarily between May and September in T. caliense; between Decem- ber and May in A. cyclopus. The mean size at maturity is 8.3 cm (standard length) in T. caliense and 6.0 cm (stan- dard length) in A. cyclopus; the sex ratio is 1:1 in T. caliense (X2=3.4, P≥0.05) and in A. cyclopus (X2=1.44, P≥0.1); the fecundity is low (191 and 113 oocytes respectively) and the eggs are small (1.5 and 2.39 mm respectively). The fishes are insectivorous and specialize in Coleoptera, Diptera and Trichoptera; Spearman Rank Correlation Coeffi- cients (rs=0.464) indicated that there are differences (T= 2.5148, P<0.01) between their diets; both taxa did not agree with the expected trophic habits for sympatric species that are morphologically similar and related in the sa- me trophic level.
    [Show full text]
  • Trichomycterus Giganteus (A Catfish, No Common Name) Ecological Risk Screening Summary
    Trichomycterus giganteus (a catfish, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, January 2017 Revised, May 2018 Web Version, 8/19/2019 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “South America: Upper Rio Guandu basin in southeastern Brazil.” Status in the United States This species has not been reported as introduced in the United States. There is no evidence that this species is in trade in the United States, based on a search of the literature and online aquarium retailers. From Arizona Secretary of State (2006): “Fish listed below are restricted live wildlife [in Arizona] as defined in R12-4-401. […] South American parasitic catfish, all species of the family Trichomycteridae and Cetopsidae […]” 1 From Dill and Cordone (1997): “[…] At the present time, 22 families of bony and cartilaginous fishes are listed [as prohibited in California], e.g. all parasitic catfishes (family Trichomycteridae) […]” From FFWCC (2016): “Prohibited nonnative species are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities. [The list of prohibited nonnative species includes:] Parasitic catfishes […] Trichomycterus giganteus” From Louisiana House of Representatives Database (2010): “No person, firm, or corporation shall at any time possess, sell, or cause to be transported into this state [Louisiana] by any other person, firm, or corporation, without first obtaining the written permission of the secretary of the Department of Wildlife and Fisheries, any of the following species of fish: […] all members of the families […] Trichomycteridae (pencil catfishes) […]” From Mississippi Secretary of State (2019): “All species of the following animals and plants have been determined to be detrimental to the State's native resources and further sales or distribution are prohibited in Mississippi.
    [Show full text]
  • Bullockia Maldonadoi ERSS
    Bullockia maldonadoi (a catfish, no common name) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, April 2015 Revised, October 2017, November 2017 Web Version, 9/10/2018 Photo: Johannes Schoeffmann. Licensed under Creative Commons BY 3.0. Available: http://www.fishbase.se/photos/UploadedBy.php?autoctr=26304&win=uploaded. (October 16, 2017). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2017): “South America: Chile.” 1 From Dyer (2000): “Bullockia maldonadoi Is another endemic taxon to the Chilean Province (ARRATIA et al.1978) […]” Status in the United States No records of Bullockia maldonadoi in the wild or in trade in the United States were found. Means of Introductions in the United States No records of Bullockia maldonadoi in the United States were found. Remarks No additional remarks. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Eschmeyer et al. (2017), Bullockia maldonadoi (Eigenmann 1920) is the valid name for this species. It was originally described as Hatcheria maldonadoi. From ITIS (2015): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii Subclass Neopterygii Infraclass Teleostei Superorder Ostariophysi Order Siluriformes Family Trichomycteridae Subfamily Trichomycterinae Genus Bullockia Species Bullockia maldonadoi (Eigenmann, 1928)” Size, Weight, and Age Range From Froese and Pauly (2017): “Max length : 5.7 cm SL male/unsexed;
    [Show full text]
  • Zootaxa, Siluriformes, Trichomycteridae
    Zootaxa 592: 1–12 (2004) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 592 Copyright © 2004 Magnolia Press ISSN 1175-5334 (online edition) New species of the catfish genus Trichomycterus (Siluriformes, Tri- chomycteridae) from the headwaters of the rio São Francisco basin, Brazil WOLMAR BENJAMIN WOSIACKI Museu Paraense Emílio Goeldi (MPEG), CZO, Laboratório de Peixes, CEP 66040-170, CP 399, Belém, PA, Brazil. E-mail: [email protected] Abstract Trichomycterus trefauti, new species, is described based on eight specimens from the rio São Fran- cisco basin, Minas Gerais, Brazil. The new species differs from all other trichomycterine species by the autapomorphic presence of an elliptical, vertically elongated, brown spot, at caudal-fin base, and the combination of homogeneously gray color pattern, first pectoral-fin ray prolonged as a fila- ment, subterminal mouth, two supraorbital pores at interorbital space, caudal fin truncate with attenuated edges, pelvic fins covering anus and urogenital openings, interorbital space very wide (39.8–45.9 % head length), maxillary barbels very long (84.2–93.0 % head length), rictal barbels very long (67.6– 74.3 % head length). Systematics, diagnostic features, and putative information on phylogenetic relationships of Trichomycterus species are discussed. Key words: catfish, Trichomycterus, species description, systematics, classification Resumo Trichomycterus trefauti, espécie nova, é descrita baseado em oito exemplares procedentes das cabe- ceiras da Bacia do Rio São Francisco, Minas
    [Show full text]
  • A New Species of Cave Catfish, Genus Trichomycterus (Siluriformes: Trichomycteridae), from the Magdalena River System, Cordillera Oriental, Colombia
    Castellanos-Morales A new species of cave catfish, genus Trichomycterus (Siluriformes: Trichomycteridae), from the Magdalena River system, Cordillera Oriental, Colombia A new species of cave catfish, genusTrichomycterus (Siluriformes: Trichomycteridae), from the Magdalena River system, Cordillera Oriental, Colombia Una nueva especie de bagre de caverna, género Trichomycterus (Siluriformes: Trichomycteridae), del sistema río Magdalena, cordillera Oriental, Colombia César A. Castellanos-Morales Abstract A new species of troglomorphic catfish is described from de Gedania Cave, located in the middle Suárez River drainage, Magdalena River system, Colombia. The new species can be distinguished from its congeners by the combination of the following characters: reduction or loss of the cornea, reduction of eyes and skin pigmentation, very long nasal and maxillary barbels (maximum of 160% and 135% of HL, respectively), nine branched pectoral-fin rays, first unbranched ray of the pectoral fin prolonged as a long filament, reaching 80% of pectoral-fin length, anterior cranial fontanel connected with the posterior fontanel through an opening of variable length and width, first dorsal- fin pterygiophore inserted between neural spines of free vertebra 13-14 and free vertebrae 33-34. The presence of troglomorphisms such as regression of the eyes, reduction of skin pigmentation and long barbels suggest the troglobitic status of this species. A comparative analysis with other species of Trichomycterus from epigean and hypogean environments is presented.
    [Show full text]
  • Redalyc.Checklist of the Freshwater Fishes of Colombia
    Biota Colombiana ISSN: 0124-5376 [email protected] Instituto de Investigación de Recursos Biológicos "Alexander von Humboldt" Colombia Maldonado-Ocampo, Javier A.; Vari, Richard P.; Saulo Usma, José Checklist of the Freshwater Fishes of Colombia Biota Colombiana, vol. 9, núm. 2, 2008, pp. 143-237 Instituto de Investigación de Recursos Biológicos "Alexander von Humboldt" Bogotá, Colombia Available in: http://www.redalyc.org/articulo.oa?id=49120960001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biota Colombiana 9 (2) 143 - 237, 2008 Checklist of the Freshwater Fishes of Colombia Javier A. Maldonado-Ocampo1; Richard P. Vari2; José Saulo Usma3 1 Investigador Asociado, curador encargado colección de peces de agua dulce, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Claustro de San Agustín, Villa de Leyva, Boyacá, Colombia. Dirección actual: Universidade Federal do Rio de Janeiro, Museu Nacional, Departamento de Vertebrados, Quinta da Boa Vista, 20940- 040 Rio de Janeiro, RJ, Brasil. [email protected] 2 Division of Fishes, Department of Vertebrate Zoology, MRC--159, National Museum of Natural History, PO Box 37012, Smithsonian Institution, Washington, D.C. 20013—7012. [email protected] 3 Coordinador Programa Ecosistemas de Agua Dulce WWF Colombia. Calle 61 No 3 A 26, Bogotá D.C., Colombia. [email protected] Abstract Data derived from the literature supplemented by examination of specimens in collections show that 1435 species of native fishes live in the freshwaters of Colombia.
    [Show full text]
  • Freshwater Fishes of Argentina: Etymologies of Species Names Dedicated to Persons
    Ichthyological Contributions of PecesCriollos 18: 1-18 (2011) 1 Freshwater fishes of Argentina: Etymologies of species names dedicated to persons. Stefan Koerber Friesenstr. 11, 45476 Muelheim, Germany, [email protected] Since the beginning of the binominal nomenclature authors dedicate names of new species described by them to persons they want to honour, mostly to the collectors or donators of the specimens the new species is based on, to colleagues, or, in fewer cases, to family members. This paper aims to provide a list of these names used for freshwater fishes from Argentina. All listed species have been reported from localities in Argentina, some regardless the fact that by our actual knowledge their distribution in this country might be doubtful. Years of birth and death could be taken mainly from obituaries, whereas those of living persons or publicly unknown ones are hard to find and missing in some accounts. Although the real existence of some persons from ancient Greek mythology might not be proven they have been included here, while the names of indigenous tribes and spirits are not. If a species name does not refer to a first family name, cross references are provided. Current systematical stati were taken from the online version of Catalog of Fishes. Alexander > Fernandez Santos Allen, Joel Asaph (1838-1921) U.S. zoologist. Curator of birds at Harvard Museum of Comparative Anatomy, director of the department of birds and mammals at the American Museum of Natural History. Ctenobrycon alleni (Eigenmann & McAtee, 1907) Amaral, Afrânio do (1894-1982) Brazilian herpetologist. Head of the antivenin snake farm at Sao Paulo and author of Snakes of Brazil.
    [Show full text]
  • The Fish of Lake Titicaca
    Author's personal copy Journal of Archaeological Science 37 (2010) 317–327 Contents lists available at ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas The fish of Lake Titicaca: implications for archaeology and changing ecology through stable isotope analysis Melanie J. Miller a, Jose´ M. Capriles b, Christine A. Hastorf a,* a Department of Anthropology, University of California at Berkeley, 232 Kroeber Hall, Berkeley, CA 94720-3710, USA b Department of Anthropology, Washington University in St. Louis, One Brookings Drive C.B. 1114, St. Louis, MO 63130, USA article info abstract Article history: Research on past human diets in the southern Lake Titicaca Basin has directed us to investigate the Received 23 May 2009 carbon and nitrogen stable isotopes of an important dietary element, fish. By completing a range of Received in revised form analyses on modern and archaeological fish remains, we contribute to two related issues regarding the 18 September 2009 application of stable isotope analysis of archaeological fish remains and in turn their place within human Accepted 22 September 2009 diet. The first issue is the potential carbon and nitrogen isotope values of prehistoric fish (and how these would impact human dietary isotopic data), and the second is the observed changes in the fish isotopes Keywords: through time. Out of this work we provide quantitative isotope relationships between fish tissues with Prehistoric fish use Paleoecology of Lake Titicaca and without lipid extraction, and a qualitative analysis of the isotopic relationships between fish tissues, South America allowing archaeologists to understand these relationships and how these values can be applied in future Carbon research.
    [Show full text]
  • Threshold Elemental Ratios and the Temperature Dependence of Herbivory in Fishes
    Received: 24 September 2018 | Accepted: 23 January 2019 DOI: 10.1111/1365-2435.13301 RESEARCH ARTICLE Threshold elemental ratios and the temperature dependence of herbivory in fishes Eric K. Moody1 | Nathan K. Lujan2 | Katherine A. Roach3 | Kirk O. Winemiller3 1Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Abstract Ames, Iowa 1. Herbivorous ectothermic vertebrates are more diverse and abundant at lower lati- 2 Department of Biological Sciences, tudes. While thermal constraints may drive this pattern, its underlying cause remains University of Toronto Scarborough, Toronto, Ontario, Canada unclear. We hypothesized that this constraint stems from an inability to meet the el- 3Department of Wildlife and Fisheries evated phosphorus demands of bony vertebrates feeding on P-poor plant material at Sciences, Program of Ecology and Evolutionary Biology, Texas A&M University, cooler temperatures because low gross growth efficiency at warmer temperatures College Station, Texas facilitates higher P ingestion rates. We predicted that dietary carbon:phosphorus Correspondence (C:P) should exceed the threshold elemental ratio between carbon and P-limited Eric K. Moody growth (TERC:P) for herbivores feeding at cooler temperatures, thereby limiting the Email: [email protected] range of herbivorous ectothermic vertebrates facing P-limited growth. Funding information 2. We tested this hypothesis using the Andean suckermouth catfishes Astroblepus Smithsonian Tropical Research Institute; Division of Integrative Organismal Systems, and Chaetostoma. Astroblepus are invertivores that inhabit relatively cool, high-el- Grant/Award Number: NSF OISE-1064578; evation streams while Chaetostoma are grazers that inhabit relatively warm, low- International Sportfish Foundation; Coypu Foundation elevation streams. We calculated TERC:P for each genus across its elevational range and compared these values to measured values of food quality over an ele- Handling Editor: Shaun Killen vational gradient in the Andes.
    [Show full text]