Arxiv:Math/0605217V3 [Math.RT] 8 Aug 2008 Si Eoi N O) Ealtedfiiino the of Definition the Recall Too)
SCHUR-WEYL DUALITY FOR HIGHER LEVELS JONATHAN BRUNDAN AND ALEXANDER KLESHCHEV Abstract. We extend Schur-Weyl duality to an arbitrary level l ≥ 1, level one recovering the classical duality between the symmetric and general linear groups. In general, the symmetric group is replaced by the degenerate cyclo- tomic Hecke algebra over C parametrized by a dominant weight of level l for the root system of type A∞. As an application, we prove that the degenerate analogue of the quasi-hereditary cover of the cyclotomic Hecke algebra con- structed by Dipper, James and Mathas is Morita equivalent to certain blocks of parabolic category O for the general linear Lie algebra. 1. Introduction We will work over the ground field C (any algebraically closed field of character- istic zero is fine too). Recall the definition of the degenerate affine Hecke algebra Hd from [D]. This is the associative algebra equal as a vector space to the tensor product C[x1,...,xd] ⊗ CSd of a polynomial algebra and the group algebra of the symmetric group Sd. We write si for the basic transposition (ii+1) ∈ Sd, and identify C[x1,...,xd] and CSd with the subspaces C[x1,...,xd] ⊗ 1 and 1 ⊗ CSd of Hd, respectively. Multiplication is then defined so that C[x1,...,xd] and CSd are subalgebras of Hd, sixj = xj si if j 6= i,i + 1, and sixi+1 = xisi +1. As well as being a subalgebra of Hd, the group algebra CSd is also a quotient, via the homomorphism Hd ։ CSd mapping x1 7→ 0 and si 7→ si for each i.
[Show full text]