On the History of Fermat’s Last Theorem: A Down-to-Earth Approach

LeoCorryTelAvivUniversity

DRAFTov.2007–OTFORQUOTATIO

1. Introduction ...... - 1 - 2. Origins – in the margins ...... - 5 - 3. Early stages – in the margins as well ...... - 8 - 4. FLT between 1800 and 1855 – still in the margins ...... - 13 - 5. Marginality within diversification in (1855-1908) ...... - 22 - 6. The Wolfskehl Prize and its aftermath ...... - 34 - 7. FLT in the twentieth century: developing old ideas, discovering new connections ...... - 44 - 8. Concluding Remarks: the Fermat-to-Wiles drama revisited ...... - 56 - 9. REFERENCES...... - 60 -

1. Introduction

AndrewWiles’proofofFermat’sLastTheorem(FLT),completedin1994,wasa landmarkoflatetwentiethcenturymathematics.Italsoattractedagreatdealof attentionamongboththemediaandthegeneralpublic.Indeed,noteverydaya mathematicalproblemissolvedmorethan350yearsafteritwasfirstposed,andnot everydaytheworkofapuremathematicianmakesittothefrontpageoftheNew YorkTimes.

OnthemarginsofhisowncopyofDiophantus’ Arithmetic Fermathadwrittendown theresultsometimeafter1630:itisnotpossibletowriteacubeasthesumoftwo cubesorabisquareasthesumoftwobisquares,andingeneral,itisnotpossible thatanumberthatisapowergreaterthantwobewrittenasthesumoftwopowersof thesametype.“Ihavediscoveredatrulymarvelousproof,whichthismarginistoo narrowtocontain...”,Fermatfamouslywrote.Theproofofaresultsoeasyto enunciateturnedouttobeenormouslyelusive.Wiles’wasanextremelycomplexand lengthyproofthatusedsophisticatedmathematicaltechniquesdrawingfromawide varietyofmathematicaldomains.Onecanbecertainthatthisisnottheproofthat Fermatthoughttohavehad.

1

ThemediacoverageofWiles’workonFLTofferedtothenonmathematicalpublican unprecedentedopportunitytobecomeacquaintedwiththearcaneworldofresearchin numbertheory.Doubtlessly,SimonSinghtooktheleadinthispopularizationeffort whenpresentinghisBBCTVprogram(incollaborationwithJohnLynch)andhis bestsellerFermat’sEnigma .ThecoverofthisbookdescribedthehistoryofFLTas

“theepicquesttosolvetheworld'sgreatestmathematicalproblem.”Thereaderistold thattheproblem“tormentedlives”and“obsessedminds”foroverthreecenturies, thusconstituting“oneofthegreateststoriesimaginable”.Onthefrontflapweread thatFLTbecametheHolyGrailofmathematicsandthatEuler,themostoutstanding mathematicianofcenturyXVIII,“hadtoadmitdefeat”inhisattemptstofindaproof.

Moreover:

Whole and colorful lives were devoted, and even sacrified, to finding a proof. … Sophie Germaintookontheidentityofamantodoresearchinaforbiddentofemales…The dashingEvaristeGaloisscribbleddowntheresultsofhisresearchdeepintothenightbefore venturingouttodieinaduelin1832.YutakaTaniyama…tragicallykilledhimselfin1958. PaulWolfskehl,afamousGermanindustrialist,claimedFermathadsavedhimfromsuicide.

“TheLastTheorem”,wereadintheopeningpassageofthebook,“isattheheartof anintriguingsagaofcourage,skullduggery,cunning,andtragedy,involvingallthe greatestheroesofmathematics.”

Descriptionsofthiskindhavedonemuchtoenhancethedramaticqualitiesofthe story,andtohelpattracttheattentionofthelaypublictothediscreetcharmsof mathematics.Indeed,forhislaudableeffortinpopularizingthestoryofFLTin1999 SinghwasbestowedaspecialawardbytheAmericanMathematicalSociety.1Butas theabovequotedpassagesuggests,evenacursoryreadingofthebookshowsthat350 yearsofhistoryofFLTwereenormouslyoverdramatizedinthisaccount.Ofcourse, thisoverdramatizationmaybeeasilyexplainedawaybyalludingtoitsintended audienceandaim.Still,IthinkthatthehistoriographicalapproachunderlyingSingh’s bookactuallyhelpsidentifyingsomeshortcomingsthathaveaffectedmanyprevious, 1oticesoftheAMS 46(5),568569.

2 bothscholarlyandpopular,accountsofthehistoryFLT(someofwhichpossibly providedSinghwithsourcesofinformation).Itisnotonlythatsuicides,transvestism, duelsatdawnanddeceptionwereneverpartofthismathematicaltale,andthatthe “greatheroesofmathematics”actuallydevotedverylittleattentiontoFLT,iftheydid atall(Galois,tobesure,devotednone).ItisthatsincethetimeofEuler,whenthis theoremarousedcuriosityamongprominentmathematicians,itwasmainlyina passive,andtypicallyephemeralwaythatdidnotelicittheirownactiveparticipation, andthus—afteritsformulationbyFermatandbeforethelaststagethatculminatedin theworkofWiles—seriousworkwasdevotedtoitonlyseldom.

InthepresentarticleIwouldliketooutlinethehistoryofFLTfromaperspectivethat seemstometofitthehistoricalrecordmoreadequately,byputtingforwardadown toearth,essentiallynondramaticaccount. 2Thisisnotintendedasacomprehensive expositionofthemainmathematicalresultsthatwereaccumulatedthroughout generationsofresearchinnumbertheoryineitherdirect,orindirect,ormerely incidentalrelationwithFLT.Noristhisanattempttoofferageneralaccountofthe ideasnecessarytounderstandWiles’proofandtherelatedmathematics. 3Likewise,in thisarticleIdonotintendtocomeupwithapersonalevaluationoftheintrinsic mathematicalimportanceofFLT(thatwouldbeunimportantandirrelevant).Rather, thishistoricalaccountanalyzesthechanginghistoricalcontextswithinwhich mathematicianspaidmoreor(typically)lessattentiontoFLTaspartoftheir professionalactivities.SomeofthefactsaroundwhichIbuildthestory(especiallyin sections2,3and4,coveringtheperiodbetweenFermatandKummer)havebeen previouslydiscussedinthesecondaryliterature.HereIrevisitthosediscussionswith asomewhatdifferentstress,whileconnectingthemaspartaspecifichistoricalthread thatisvisiblefromtheperspectiveIsuggest.Otherfactsthatarepartofthisthread havebeenessentiallyoverlookedthusfarandIdiscussthem(especiallyinsections 5,6and7,coveringactivityinnumbertheoryinthenineteenthandtwentiethcentury.) 2 For a recent discussion of narrative strategies (and dramatic vs. non dramatic approaches)inthehistoriographyofmathematics,see[Corry2008].

3Interestedreaderscanconsult,amongothers,[Edwards1977],[Hellegouarch2001],

[Ribenboim1980,1997],[VanderPoorten1995].

3

Inparticular,section6discussesthesurprisingroleoftheWolfskhelprizeasapivotal pointinthestory,whilesection7describesthewayinwhichsomedeepchangesthat affectedthedisciplineinnumbertheoryoverthetwentiethcenturyofferednew perspectivesfromwhichtoconsiderFLTaspartofmoregeneralfamiliesofproblems towhichincreasinglysignificantresearcheffortsweredevoted.

Asalreadysuggested,thereaderwillnotfindhereentiremathematicallivesdedicated tothetheorem,andonlythreecases(withvaryingdegreesofintensityandlength)of “partiallife”dedication:SophieGermain,HarrySchultzVandiver,andWiles. Certainly,theoremrelatedsuicidesarenotpartofthisstory.Rather,wewillcome acrossingeniousideas(someofthem,butratherfew,withbroader,longterm repercussionsonthetheoryofnumbers),intermittentcuriosityand,mainly, mathematiciansoccupiedwithallkindsofproblemscloseto,orsometimesdistant from,FLT,withoccasionalincursionsandfurtiveattemptstosolvetheproblem.As willbeseenhere,animportantvirtueofthehistoryofFLT,simplybecauseofthe timespanitcovers,isthatitaffordsausefulpointofviewfromwhichtofollowthe deepchangesundergonebytheentirefieldofnumbertheoryfromthetimeofFermat toourdays.

TheinherentdifficultyinvolvedinaprospectiveproofofFLTisnowadaysmore evidentthanever.Thisprovidesapossibleargumenttoexplain,inretrospect,the relativescarcityofevidenceindicating significant andlasting activitydirectlyrelated toFLTthatIwilldiscussinwhatfollows.Thus,onepossiblecounterargumenttobe adducedisthatmathematicianswhoseworkisdiscussedhere did considerFLTasa trulyimportantproblemand/or diddevoteattimesmuchefforttoattempttosolveit, butsincethiseffortdidnotleadtoanyrealbreakthrough(andnowwerealizethatit couldnotleadtoabreakthroughatthetime)nothingofthiswaspublished,inspiteof theinterestandeffortdevoted.Itmightalsobeclaimedthatinspiteoftheintrinsic importanceconcededbymanytotheproblem,prominentnumbertheorists immediatelysensedtherealmagnitudeofthedifficultyandonlyforthisreason decidedtoredirecttheirtimeandeffortstowardsdifferent,morepotentiallyrewarding aims.Lackofevidence,underthesearguments,doesnotindicatelackofinterestor evenlackofactivity.Sucharguments,Iadmit,areplausibleandtheyarehardto refute.Indeed,Ibelievethattheymayperhapsholdtrue(atleasttosomeextent)for someofthemathematiciansdiscussedhereorforsomewhomIdidnotdiscuss.And

4 yet,IthinkthatthepositiveevidencethatIdopresentandtheoverallpicturethat arisesfrommyaccountbelowproduceasufficientlycoherentcasethatsupportsmy interpretationthatlackofevidencewasrelatedtolackofactivity,oratleast serious interestandactivity.

Wiles’achievementinvolvedaproofofthesemistablecaseoftheTaniyama Shimuraconjecture(TS)thatbythenwasknowntoyieldFLTasacorollary.This wasatrulymathematical tourofforce .Thestoryofhisownpersonalquesttoprove FLTisindeeddramaticattwolevels:hisinterestinthetheoremeversincechildhood that,afteralonghiatusofdecades,eventuallyculminatedinthegreatproof,andthe yearsofseclusionthatledtoaproofinwhichanerrorwaseventuallyfoundthat requiredextraworkbeforecompletionseveralmonthslater.Buttheearlierchapters ofthestoryweremuchlessheroic:thehistoricalrecordshowsthatFLTwasbornon thephysicalmarginsofabookandthatthroughoutmorethan350yearsitessentially remainedatthemarginsofthetheoryofnumbers,withoccasionalforaysintothe limelightandatrulyamazing grandfinale intheworkofWiles.

2. Origins – in the margins

NumbertheoreticalquestionsstartedtooccupythemindofFermatsometimearound 1635undertheinfluenceofMarinMersenne(15881648).Whilestudying Diophantus’ Arithmetica ,inaLatintranslationpreparedin1621byClaudeBachet (15811638),FermatcameacrosstheeighthproblemofBookII,typicalofthose formulatedandsolvedbyDiophantus.Itrequirestowriteagivensquarenumberasa sumoftwosquarenumbers.Onthemarginsofhiscopy,Fermatwrotedownthe famousclaimabouttheimpossibilityofdoingsomethingsimilarforcubes,bi squares,oranyhigherpower,andabouthavingaremarkableproofofthisfactwhich, unfortunately,couldnotbewritteninthenarrowmarginsofthebook.Thisisthe famousoriginnotonlyofwhatbecamealongmathematicalquest,butalsoofthe dramaticcharacteroftenassociatedwiththestory.Alessdramaticapproachforthe partofthestorydirectlyrelatedtoFermat,however,arisesfromaclosereadingof severalexistinghistoricalaccountsofthismathematician’soverallcontributionto numbertheory[Goldstein1995;Mahoney1984;Scharlau&Opolka1985,514;Weil

5

1984,37124].Irelyhereontheseaccountstorecountbrieflytheinitialstagesofthe storyofFLTwithinthemorerelaxedperspectiveIsuggestfortheentirenarrative associatedtothehistoryofthetheorem.

ItwasFermat’shabittowriteonthemarginsofbooks,particularlyhiscopyofthe Arithmetica ,unprovenresults,generalideas,andpossiblemathematicalchallenges. Healsocommunicatedideasinletterstoaofcorrespondentswithlikeinterests, butheneverkeptcopiesofsuchletters.Exceptforonewellknowncase,mentioned rightbelow,heneverexplainedhismethodofproofforanarithmeticalresult.Itis thushardtodeterminewithcertaintyinallcaseswhichresultshehadreallyproved, andwhichhehadassertedonthebasisofaccumulatednumericalevidence.Most likely,inmostcases,hedidhaveaclearideaofaproofwhenhesodeclared,but sinceheseldomwrotethemdown,someofthesemayhavebeenoccasionally erroneous.Thebestknownexampleofthisistheonerelatedwiththesocalled

n Fermatintegers,oftheform 22 +1.Inletterswrittenbetween1640and1658,Fermat expressedhisconvictionthatsuchnumberswouldbeprimeforany n,butatthesame timeheconfessednottohaveaproofofthatfact.Andyetinalettersentin1659to PierredeCarcavi(16001684)butactuallyintendedforHuygens,Fermatsuggestedto haveaproofofthisconjecturebasedonthe“methodofinfinitedescent”[Fermat Oeuvres ,Vol.2,431436].Eventually,however,in1732Eulerfamouslyshowedthat for n=5,thecorrespondingFermatnumberisnotaprime.

Inthecasethatconcernsushere,themarginalnotethatlaterbecameknownasFLT waswrittenclosetotheawakeningofFermat’sinterestinthiskindofquestions,and thereisnoevidencethatheeverrepeatedinwritingtheconjectureforthegeneral case.Incontrast,heexplicitlychallengedin1636acorrespondenttoprove(among otherproblems)casesn=3andcase n=4oftheconjecture[Oeuvres ,Vol.3,286 292].Alsointhe1659lettertoCarcavi,Fermatclaimedtohaveusedthemethodof descentforprovingseveralresults,amongwhichhementionedthecase n=3ofhis conjecture.ItseemsthussafetoassumethatFermatsoonspottedanerrorinwhathe initiallythoughttobeacorrectproofforthegeneralcase,andtherewasnoreasonto publiclycorrectastatementadvancedonlyprivately.Atanyrate,thiswasonlyoneof manyotherconjecturesheproposedanddiscussed.

Themethodofinfinitedescentisappliedintheoneproofofanarithmeticalresultthat Fermatindicatedindetail,whichisanotherresultinspiredbyDiophantus.Thistime,

6 themarginsofthe Arithmetica werewideenoughtocontaintheargument[Oeuvres , Vol.I,340342].Theresultstates(symbolicallyexpressed)thattherearenothree integers x,y,zthatsatisfytheformula

x2+ y2= z2 andforwhich,atthesametime, xy /2isasquarenumber. 4Interestingly,Fermat’s proofofthisfactalsoprovesFLTforcase n=4,sinceitprovesthat z4–x4cannotbe asquare,andhencecertainlynotabisquare[Edwards1977,1014;Weil1978,77 79].Fermatwascertainlyawareofthisimplication[ Oeuvres ,Vol.1,327].Ofcourse, thecase n=4isimportantforafundamentalreason:ifFLTistruefor n=4,thenitis clearthatinordertoprovethegeneralcaseitisenoughthatFLTbevalidforprime numbers.

InFermat’s1659letter,theimpossibilityofwritingacubeasasumoftwocubes appearsaspartofalistofseveralnumbertheoretical,generalresultsthatFermat consideredworthofattention,andthatcouldbesolvedusinginfinitedescent.Fermat statedthattheysummarizedhis“fantasiesonthesubjectofnumbers”butatthesame timehemadeitclearthatisjustoneofaninfinityofquestionsofthiskind.Among themostinterestingandchallengingofthese,Fermatsingledouttherepresentability ofanynumberasasumofuptofoursquares,aproblemthatalsoDescartes consideredoneofthemostbeautifulofarithmeticandonewhoseapparentdifficulty preventedhimfromeventryingtosearchforaproof[Scharlau&Opolka1985,9]. TheotheritemsinFermat’slistwerefundamentalinleadingtotheeventual developmentofthetheoryofquadraticforms.Thegeneralcaseoftheconjecturethat becameFLTdoesnotappearinthelist.Exceptforhiscircleofcorrespondents Fermatfeltatotallackofinterestonthesideofhiscontemporaries(especiallyBritish mathematicians)onquestionsofthiskind,andhedecidedtoprovideinformation abouthismethodandthislistofproblemsforfearthattheybelosttolatergenerations ashewouldnottofind“theleisuretowriteoutandexpandproperlyalltheseproofs andmethods”[Weil1984,118]. 4[Goldstein1995]containsanintrerestinganddetailedaccountofthehistoryofthis resultandhowitwasread,developedandtransmittedbycontempraryandsuccessive generationsofmathematicians.

7

Thisverybriefaccountshouldsufficetoprovideafairideaoftheverylimited interestthatthemarginalconjecturehadwithintheoverallpictureofFermat’s arithmeticendeavors.Eventually,alargenumberofhisachievementsbecame publiclyknownthankstohisson,Samuel.In1670SamuelFermatpublishedan editedversionofBachet’sLatintranslationofDiophantus’ Arithmetica ,including commentsandrelatedlettersbyhisfather.Throughthiseditiontheworldbecame awarenotonlyofwhatbecameFLT,butalsoofmanyotherideas.

3. Early stages – in the margins as well

AfterSamuelFermathadpublishedin1630Diophantus’ Arithmeticawithhisfather’s comments,anduntilthemideighteenthcentury,fewmathematicianseverattempted tosolveanyoftheproblemsproposedbyFermat,andpossiblynooneattemptedto solvewhatbecameFLT.1753istheyearwhenLeonhardEuler(17071783)enters thestory.TheamountandscopeofEuler’sscientificoutputisastonishing.Hewas involvedin,andsignificantlycontributedto,allfieldsofmathematicsandphysicsin whichresearchwasconductedatthattime.Thisincludes,ofcourse,whatweknow todayasthetheoryofnumbers.Itisimportanttostress,however,thatinEuler’stime therewasactuallynomathematicalfieldcalled“numbertheory”.Rather,therewasa heterogeneouscollectionofmoreorlesscomplexproblemsandtechniquesthatwere neverfullysystematized,andthatwereassociatedwiththefieldof“arithmetic”.In fact,theterm“higherarithmetic”remainedinuseuntilthenineteenthcentury(and eventhereafter),whichisthetimewhentheterm“numbertheory”startedtobe widelyadopted.Moreover,theperiodoftimebetweenFermatandEulerisprecisely thetimeoftheriseandearlydevelopmentofthecalculus.Itseemsquiteevidentthat duringthistime,itwasthenewcalculusthatattracted,aboveall,mostoftheenergies oftheleadingmathematicians.Relativelylittleattentionwasdevotedatthetimeto thishigherarithmetic.

ThisassertionisalsotrueofEuler,butatthesametimeitisalsotruethathekepta livelyinterestinarithmeticinstarkcontrasttohispredecessorsandcontemporaries, andthatheachievedimportantresultsinthisfield.Fermat’slegacyofunsolved problemswasnodoubtanimportantfactorindirectingEuler’sinteresttothisfield [Weil1984,160274].Eulersolvedmanyoftheseopenproblems,butsomeothershe

8 didnot,orcouldnot,solve.FLTwasoneofthelatterclass,butdefinitelynottheonly one.Thus,forinstance,in1770JosephLouisLagrange(1736–1813)solveda differentopenproblemproposedbyFermat,andthatEulerhadunsuccessfully attemptedtoprove,namely,thatanyintegercanbewrittenasthesumofnomore thanfoursquarenumbers.

ItwasmostlyinthecorrespondencewithhisfriendChristianGoldbach(1690 1764)—famousforhis(stillunproven)conjectureonthepossibilityofwritingevery evennumberasthesumoftwoprimenumbers—thatEulerdiscussedFermat’sideas. Thiscorrespondencestartedinlate1729andlastedthirtyfiveyears.Eulerand Goldbachdiscussedaboveallproblemsrelatedwithmathematicalphysicsandinfinite seriesandintegration.Theyalsodiscussedsomehigherarithmetic,especially concerningpossiblerepresentationsofnumbersasspecifickindsofsumsofpowers. Fermat’snumbertheoreticalideasdoappearoccasionallyintheseletters,butbarely inconnectionwithwhatbecameFLT.Fromthefirstletters,wheneverthename Fermatappears,itismainlyinconnectionwiththequestionoftheFermatnumbers. And1753,onlytwentyfouryearsafterthecorrespondencestarted,isthefirsttime whenFermat’smarginalconjecturecomesup,inthelasthalfpageofaletterwhere manyotherideaswerealsodiscussed.

Inthatletter,EulertoldGoldbachaboutthis“verybeautiful”theoremofFermat.He claimedtohavefoundproofsforthecases n=3and n=4,andheaddedthatthe proofsofthesetwocasesweresoessentiallydifferentfromeachother,thathesawno possibilitytoderivefromthemageneralproof.Moreover,itwascleartohimthatthe higheronewentinthepowers,themoreclearlyimpossiblethevalidityoftheformula xn+ yn= znwouldappear.Also,hehadnotbeenablesofartofindtheprooffor n=5 [Fuss1843,Vol.1,618].That’sallhehadtosayaboutthisproblem.Fromafurther letterof1755,welearnthathewassurethatFermatdidhavethegeneralproof,and statedagainthathisowneffortsinthisregardsofarhadbeeninvain[Fuss1843,Vol. 1,623].In1770Eulerpublishedatextbookon,andhisproofforthecase n= 3appearedthere.Althoughhighlyingenious,itcontainedanontrivialmistake[Euler 1770].Theideaneededinordertocorrectthisproofdoesappearinotherplacesinhis work[Euler1760],andthus,ithasbeencommontoclaim,withsomedegreeof justificationbutnotwithfullhistoricalprecision,thatEulerwasabletosolvethecase n=3ofFLT.

9

ButthereisanotherinterestingpointtolookatinthelastfewsentencesofEuler’s letterof1753.Euleraddedherehisownidea,differenttoFermat’s,onhowthe originalproblemofDiophantuscouldbegeneralized.Sincetheequationsa2+ b2= c2 and a3+ b3+ c3 = d3dohaveintegersolutions,thenitwouldseemtoappearthat a4+ b4+ c4 + d4 = e4shouldalsohavesuchsolutions.Eulerhadnotyetfoundfourintegers thatsatisfytheequation,buthehadfoundfivebisquaressumminguptoabisquare. Then,in1778hereferredonceagaintoFLTandsuggestedafurthergeneralization (quotedin[Dickson1919,Vol.2,648]):

IthasseemedtomanyGeometersthatthistheoremmaybegeneralized.Justastheredonot existtwocubeswhosesumordifferenceisacube,itiscertainthatitisimpossibletoexhibit threebiquadrateswhosesumisabiquadrate,butthatatleastfourbiquadratesareneededif theirsumistobeabiquadrate,althoughnoonehasbeenableuptothepresenttoassignfour suchbiquadrates.Inthesame mannerit wouldseem tobeimpossibletoexhibit four fifth powerswhosesumisafifthpower,andsimilarlyforhigherpowers.

Fermat’sgeneralizationwasonewaytogo,andhereEulersimplythoughtofa differentpossibleone.Whocouldhavetoldatthetimewhichofalloftheseideas wouldbethemostinterestingandfruitfuloneformathematics?Asamatteroffact, thislatterconjecturebyEuler,ontheimpossibilityoffindingthreebiquadrateswhose sumisabiquadrate,hadabeautifulhistoryofitself,anditwasonlyin1988that NoamElkiesatHarvardfoundthefollowing,trulyamazingcounterexampletothe conjecture[Elkies1988]:

2,682,440 4+15,365,639 4+18,796,760 4=20,615,673 4.

AdetachedinspectionofthehistoricalrecordthusshowsthatwhileEulermayhave certainlyfeltchallengedbyanyprobleminhigherarithmeticthathewasnotableto solve,wecanhardlythinkthatFLTrepresentedapressingquestionofparticular mathematicalinterestthatcalledforanurgentsolutiononhisside.Letusnotimagine, then,ofanEulercallingapressconferenceto“admitdefeat”inprovingFLT.

NorhadEulermanyimmediatesuccessorsthatintensivelypursuedhisinterestsin numbertheoryingeneral.Ofthegreatmathematiciansofthefollowinggeneration, onlyLagrange,Euler’ssuccessorattheBerlinAcademyofSciences,canbesingled outashavingdevelopedarealinterestinthefield.Tobesure,however,Lagrange madenocontributiontoFLTnorexpressedanyinterestintheproblem.In1786, LagrangemovedtoParis,andbythattimehewasnolongeractiveinnumbertheory.

10

OneoftheyoungercolleagueshemettherewasAdrianMarieLegendre(17521833), whoseearlierworkonballisticsLagrangeknewwell.Legendrestartednowtopublish interestingworkonnumbertheory,inspiredbythatofEulerandLagrange[Weil 1984,309338].In1798hepublishedacomprehensivetreatiseonthefieldasknown tohimatthetime,andthistreatisewouldseeseveralreeditionsuntil1830.Thefirst editionincludedproofsofFLTfortheexponents n=3and n=4.

Legendre’streatiseisaninterestingsourceofinformationnotjustaboutthespecific numbertheoreticalresultsknownatthetimeofpublicationofitsvariouseditions,but evenmoresoabouttheevolving,overallimageofthedisciplinewithitsmainopen problems,itsinternalorganizationintosubtopics,anditsrelevanttechniquesand toolsalongtheyears.Theprefacetothefirstedition[Legendre1798],forinstance, providesaclearroadmapofthefield,updatedtotheendoftheeighteenthcentury. Fermatappearshereasamainhero,andLegendrestressesthatifhehadconcealed proofsoftheresultsheachieved,thiswasnotonlyinordertosecurehisownpersonal successes,butalsoforthatofhisnation,because“therewasarivalryaboveall betweentheFrenchandEnglishgeometers”.Euler’scontributions,ofcourse,were alsocentral,andespeciallysincetheyledtotheproofoftwoofFermat’s“principal theorems”.BythisLegendredidnotmeanFLT,butratherthefollowing:“(1)thatif a isaprimenumber,and xisanynumbernotdivisibleby a,thentheformula xa11is alwaysdivisibleby a;(2)thateveryprimenumberoftheform4 n+1isthesumof twosquares.”LegendrealsomentionedtheotherremarkableresultsfoundinEuler’s works,amongwhichtheproofsoftwocasesofFLTarejustonemoreitem.Inthe entirelist:

Onefindsthetheoryofdivisorsofthequantity an±bn;thetreatise Partitionenumerorum …; the use of imaginary and irrational factors in the solution of indeterminate equations; the general solution of indeterminate equations of second degree, under the assumption that a particularsolutionisknown,theproofofvarioustheoremsaboutthepowersofnumbersand, inparticular,ofthosenegativepropositionsadvancedbyFermatthatthesumordifferenceof twocubescannotbeacubeandthatthesumordifferenceoftwobisquarescannotbeabi square.

LegendrealsopraisedLagrangeforhisachievements,andtheonlyonethatrelated Fermat’slegacywastheproofofthesolvabilityoftheequation x2–Ay 2=1,andthe techniquesdevelopedaroundit.InLegendre’sview,themostremarkableof Lagrange’sdiscoveriesinthisfieldwasageneraland“singularlyfecund”method,

11 fromwhich“aninfinity”ofotherresultswouldfollow,andthatrelatedthetreatment oflinearandquadraticformsasappliedtoquestionsofprimenumbers.

Asforhisownworks,Legendrementionedvariousresultsconcerningquadratic forms,thereciprocitylaw,andtheapplicationofthesetwotoperfectingLagrange’s techniques.OneapplicationofhisresultsthatLegendresingledoutasbeing particularlyimportantwasthesolutionof“thefamoustheorembyFermat”,thatany numbercanbewrittenasthesumofthreetriangularnumbers,andanothertheoremby thesameauthorstatingthateveryprimenumberoftheform8 n+7isoftheform p2+ q2+2 r2.Indeed,inthebodyofthebook,whenLegendrespeaksabout“Fermat’s generaltheorem”hemeansthe“polygonalnumbertheorem”,apolygonalnumberof

m 2 orderm+2beinganumberoftheform 2 (x − x) + x .Fermathadconjecturedaround 1638thateveryinteger ncanbewrittenasthesumofatmost m+2polygonal numbersoforder m+2.ThisistheconjecturethatEulerdidnotsucceedinproving andforwhichLagrangeprovidedin1770aproofofthesimplestcase(i.e.,thatevery nonnegativeintegeristhesumoffoursquares).In1816Cauchywouldprovethe conjecturefor m>2,andLegendrewouldeventuallyincludeinthethirdeditionof histreatisearefinementofCauchy’sproof[Nathanson1987].Inthefirstedition Legendrejustsketchedaprooffortriangularnumbers.5Interestingly,hespeaksinthis sectionaboutFermat’sputativeproofofthisconjectureinawaysimilartothatused onlymuchlatertospeakaboutFLT.Thus,Legendreexplainedwhy,inhisview,itis clearthatifFermatwereawareofideassuchasdevelopedlaterbyLagrange,he wouldhavemostlikelyformulatedhisconjectureinadifferentway[Legendre1830, 350].Immediatelyafterthesectiondevotedtothistheorem,whichforLegendrewas themostimportantoneinFermat’slegacy,hepresentedtheproofofFLTfor n=3 anddidnotaddmuchcommentstoit.

Itwasonlygradually,asmoreandmoreopenproblemsrelatedwithFermat’slegacy weresolved,andasFLTprogressivelybecamehis“last”unprovenconjecture,that thisproblemstartedtoreceivesomespecificattention,eventhoughthisattentiondid notderivefromanyspecial,intrinsicimportancethatcouldevidentlybeassociated withtheproblem.Littlebylittle,thefactthattheproblemhadnotbeensolvedby

5Afullproofofthiscaseappearedin1801inGauss’s DisquisitionesArithmeticae .

12 othersaddedincreasedmathematicalcharmtoit.Morethanonehundredandfifty yearsafterthefamousmarginalremark,then,veryfeweffortshadbeenactually devotedtosolveit.Bytheendoftheeighteenthcenturylittleimportancewasyet attributedtoFLT,evenwithintheframeworkofabooklikeLegendre’sthatwas entirelydevotedtothefieldofnumbertheory,thisfieldbeingofrelativelylittle importancewithintheoveralleconomyofmathematicsatthetime.

4. FLT between 1800 and 1855 – still in the margins

Thefirstgreatcodificationandsystematizationofnumbertheoryatthebeginningof nineteenthcenturywasthemonumental DisquisitionesArithmeticae publishedin 1801byCarlFriedrichGauss(17771855).Thisbookpresentedforthefirsttimeina trulysystematicfashionagreatamountofresultsthatweretheretoforeseen(evenin Legendre’spresentation)asasomewhathaphazardcollectionofseparateproblems anddiversetechniques.Disquisitiones soonrenderedLegendre’sbookobsolete.Ithad amomentous,thoughfarformstraightforward,influenceoverwhatthedisciplineof numbertheorywouldbecomeoverthenineteenthcenturyandbeyond[Goldstein& Schappacher2007].ItisforthisreasonnaturalthatanyaccountofFLTwillraisethe questionofGauss’attitudetowardstheproblem.Gaussindeedgavesomethoughtto theproblem:inaletterposthumouslypublished,hedraftedapossibleproofforthe case n=5,whilestressingthatthemethodhesuggestedmightpossiblybeusedalso inthecase n=7[Gauss Werke ,Vol.2,390391].Butatthesametime,hewasclear inhisopinionaboutFLT,andthisopinionheexpressed,forinstance,inaletteron 1816tohisfriend,theastronomerWilhelmOlbers(17581840)[Gauss Werke ,Vol.2, 629]:“IconfessthatFermat’sLastTheorem—hewrote—asanisolatedproposition hasverylittleinterestforme,forIcouldeasilylaydownamultitudeofsuch propositions,whichonecouldneitherprovenordisprove”.

Oneofthemainmathematicalthemesdevelopedinthe Disquisitiones pertainstothe problemof“quadraticreciprocity”,whichforGausswouldprovideaclassical exampleofwhatisatrulyimportantmathematicalproblem.Gaussdevisednoless thaneightdifferentproofsofthetheoremofquadraticreciprocity[Lemmermeyer 2000,911].Indeed,therewasanimportantreasonforbotheringthatmuchwithone andthesameproblemasineachoftheproofs,Gausshopedtofindawaythatwill

13 allowgeneralizingtheproblemtopowershigherthantwo,and,indeed,hehimself successfullysolvedtheproblemforthecubicandbiquadraticcases[Collison1977; Goldstein&Schappacher2007].

OfspecialimportanceinhismanyattemptstodealwithreciprocitywasGauss’s introductionandstudyofanewkindofnumbers,thesocalled“Gaussianintegers”, namely,complexnumbersoftheform a+ ib ,where a, bareanytwointegers.In manyrespects,theseGaussianintegersbehavelikestandardintegers(or“rational integers”astheybecameknownstartingwiththeworkofDedekind).While introducingthisideaasatoolforinvestigatingreciprocityproperties,Gausswasalso interestedininvestigatinghowfartheanalogybetweenrationalintegersandGaussian onescouldbeextended.Thefirsttouseargumentsinvolvingcomplexnumbersin ordertoprovetheoremsaboutintegerswasEuler,preciselyininvestigatingthekind ofquestionsmentionedabove,andinparticularinhisallegedproofofcase n=3of FTL.ButitwasGausswhosystematizeditandwhomadethispossibilitywidely knownamongmathematicianswhiledevelopingtheGaussianintegers.Further attemptstogeneralizethisideawouldplayanimportantroleinthelaterdevelopment ofnumbertheory,andinparticularofFLTaswewillseeinwhatfollows.Inhis alreadymentionedlettertoOlbers,Gaussclaimedthatdevelopingatheorythatwould generalizetheideaofGaussianintegerswouldnodoubtleadtoimportant breakthroughsandthatFLT“wouldappearonlyamongoneofthelessinteresting corollaries”ofsuchatheory.Nevertheless,inthelettertoOlbers,Gaussdoessaythat FLTcausedhim“toreturntosomeoldideasforagreatextensionofhigher arithmetic.”Whathemeantbythisisnotreallyclear,giventhatbythistimehewas notinvolvedanymoreinresearchonnumbertheory.Onemayconjecture,though,that hewasreferringtohiscorrespondence,especiallybetween1804and1809,with SophieGermain(17761831),aremarkablefigureinthisstory.

Thelimitationsthatpreventedatthetimeawomanfrompursuingherintellectual interestsintheframeworkoftheleadingacademicinstitutionsdidnotdeterGermain fromvaliantlyeducatingherselfathome,usinghisfather’swellequippedlibrary,ina broadrangeofscientifictopics.Awarethatshewouldnotbeacceptedintothenewly foundedEcolePolytechnique,GermainsentapaperonanalysistoLagrangeusingthe nameofanacquaintancewhowasaregisteredstudentattheinstitution,Antoine AugustLeBlanc.Positivelyimpressedbythework,LagrangeaskedtomeetM.Le

14

Blanc.Thesurpriseuponmeetingthepersonbehindthenamedidnotdiminish Lagrange’senthusiasmfortheauthor’stalents,andhecontinuedtosupportGermain formanyyears.Thiskindofsurprisewouldrepeatitselfinthenearfuturewithtwo otherimportantmathematicians,asGermaindevelopedaninterestinnumbertheory andinitiatedacorrespondencewithbothLegendreandGaussafterstudyingindetail theirtreatisesandcomingupwithnewandoriginalideasinthefield[Bucciarelli& Dworsky1980].

TheLeBlancepisodehasrepeatedlybeenrehearsedaspartofthedramatizingtrends associatedwiththeFLTstory.Singh,forinstance,typicallypointsoutthatGermain “hadtotakeontheidentityofamantoconductresearchinafieldforbiddento females”.Hedoesnotqualifythisstatementbyexplainingthatthefield“forbiddento females”atthetimewasscienceingeneral,ratherthananythingspecificconnected withFLT.AnotherwayinwhichtheGermainstoryisseldomqualifiedisbyduly pointingoutthat—foralltheadmirationshedeservesasawomanwhochallenged contemporarysocialconventionsinrelationtogender,scienceandlearning—when comparedtoothergreatfemininefiguresinthehistoryofmathematics,herbiography lacksthesocialorpoliticalinterestofaSofiaKovalevskaia(18501891)andbyall meansthemathematicalbrillianceandimpactofanEmmyNoether(18821935) [Dauben1985].Still,sheiscertainlycentraltotheFLTstoryaswillbeseennow. Indeed,shewasthefirstpersontodevotesustainedeffortstoFLTandtocomeup withareasonablyelaboratedstrategytoattacktheprobleminitsgenerality.This situation,however,onlystressesthepointIamtryingtopursueinthisarticle,andnot becausetheintrinsiclimitationsofherstrategythatbecomeevidentwiththebenefit ofhindsight.Rather,mypointisthatGermain’sfocusonFLTisbotharesultofher institutionalisolationandastrongevidenceofthelackofsystematictrainingand interactionwiththemaintopicsofcontemporaryresearchinhigherarithmetic.Letme explainthispointisgreaterdetail.

Asalreadysaid,afirststageofhercorrespondenceonarithmeticwithGausstook placebetween1804and1809.In1808Germain’sscientificattentionwasdivertedto adifferentfieldinwhichshegainedrecognition,evenifinretrospectiveherworkwas essentiallyflawed:thetheoryofvibrationsforelasticsurfaces.TheFrenchAcademy offeredaprizefororiginalresearchinthisverydifficultproblem,andGermain presentedthreememoriesbetween1811and1816.Forthelastone,inspiteofsome

15 mistakesaffectingit,shewasawardedtheprize.Atthesametime,in1815andthen againin1818theFrenchAcademyinParisofferedaminorprizefortheproofof FLT.Thisprizewasneverawarded,butapparentlyitbroughtGermainagainto researchinnumbertheory.AftermorethantenyearsofsilenceshewrotetoGauss againin1819presentingsomenewideasonFLT,andexplainingthatshehadnever stoppedtothinkaboutnumbertheory.Actually,shestated,shehadbeenthinkingon FLTlongbeforetheAcademyestablishedthisnewprize[delCentina2005].

Gauss’srepliestoGermain’slettersof18041809reflectadmirationandrespect,and theseonlygrewuponhisrealizingthegenderofhiscorrespondent.Wealsoknowthat hespoketoothersaboutherwithgreatesteem.Indeed,shortlybeforeherdeathin 1831,GaussconvincedtheUniversityofGöttingentoawardheranhonorarydegree, butunfortunatelyitturnedouttobelate.Inherlettersof1804to1909,Germain mentionedsomeideasaboutpossiblewaystosolveFLTbutshewrotemainlyabout thetwomaintopicstreatedin Disquisitiones ,namelyreciprocityandquadraticaswell ashigherforms.Inallofhisrepliestoher,Gaussnevereverreferredtothepointsshe raisedinrelationwithFLT(see[Boncompagni1880]).Inherdetailedletterof1819 Germainstressedhowshehadusedideastakenfromthe Disquisitiones asthebasisof herstrategytoproveFLT.Assoonasshehadreadthisbook,shewrotetohimnow, theconnectionbetweentheFermatequationandthetheoryofresidues vaguely appearedtoher.Shealsopointedoutthatshehadalreadymentionedthisideatohim alongtimeago.Germainexplainedherideasindetailintheletterandspecifically askedGaussabouttheirpossibleimportance.Shewasobviouslyanxioustohear Gauss’sreplysoon,whensheentrustedthislettertohisfriendSchumacherwhohad cometovisit.Andyet,Gaussneveransweredherletter[delCentina2008].There maybemanyexplanationsforthis,includinglackoftimeandthefactthatGausshad estrangedhimselfformanyyearsfromdirectinvolvementwithnumbertheory.It seemstome,however,thatGauss’specificlackofinteresttowardsFLTmusthave playedasignificantroleaswell.

HerinteractionwithLegendrewasalsorathercomplexandindicativeofan ambiguousevaluationoftheimportanceofherwork.Ontheonehand,itwas Legendrewhopublishedandstressedthevalueofsomeofherideas,andthankstohis actionherresultssensiblyinfluencedsubsequentresearchonFLT.Ontheotherhand, muchofGermain’sworkremainedunpublishedanditispossiblethatevenLegendre

16 didnotreaditoratleastdidnotattributesufficientinteresttothem. 6Itisremarkable thatinaletterof1819Legendre,possiblyasareplytoaletterbyheratthattime,also wrotediscouragingly[Stupuy1896,311]:

IwarnyouthatsinceIspoketoyouforthefirsttimeaboutyourapproach,theopinionIhad aboutitschancesofsuccesshasnowconsiderableweakened,andthat,allthingsconsidered, Ibelievethatitwillbeassterileasmanyothers.ThisiswhyIthinkyouwillmakeverywell nottooccupyyourselfmorewiththis,outoffearofwastingtimewhichcanbeemployed muchmoreusefullywithotherresearch.

ThecentralpointinGermain’slineofattackonFLTthatturnedouttobeofsignal importanceformanysubsequentattemptstoprovetheconjectureuntilthe1980s (thoughnotforWiles’eventualstrategy)isrelatedtothetheoremthatbearshername andtherelated,wellknowseparationoftheproblemintotwocases.Asalready pointedout,adirectconsequenceoftheproofofFLTfor n=4,isthattheconjecture isprovedonceitisprovedforalloddprimeexponents.Also,itiseasilyseenthat, withoutlossofgenerality,onemayassumethat x, y,and zarerelativelyprime. Germaindividedthepossiblesolutionstobeinvestigatedintotwoseparatecasesthat weretobecomestandardinthetreatmentoftheproblemthereafter,namely:

CaseI–therearenothreepositiveintegernumbers x,y,zthatsatisfy xn+ yn= zn, andsuchthatnooneofthemisdivisibleby n.

CaseII–therearenothreepositiveintegernumbers x,y,zthatsatisfy xn+ yn= zn, andsuchthatoneandonlyoneofthemisdivisibleby n.

Germain’stheoremcanbeformulatedasfollows:

CaseIofFLTistrueforanexponent n,ifthereisanauxiliaryoddprime pfor whichthefollowingtwoconditionshold:

(1) xn+ yn+ zn≡0(mod p)implieseither x≡0(mod p),or y≡0(mod p),or z≡0(mod p)

(1.2) xn≡ n(mod p)isimpossibleforanyvalueof x

Basedonthisresult,GermainprovedthatCaseIholdswhenever nand2 n+1areboth prime.Shealsoprovedadditionalconditionsinvolvingcongruencesamongprimesof

6ForthcomingHM.

17 variousformsand,basedonthese,performeddetailedcalculations,generatingamong otherthingsvaluesoftheauxiliaryprime l.ShewasthusabletoprovethatcaseIof FLTisvalidforallprimeexponents psmallerthan197. 7

CaseIIturnedouttobemuchmoredifficult.For n=5,caseIIwasprovedonlyin 1825inseparate,complementaryproofsofLegendreandPeterLejeuneDirichlet (18051859).Dirichletalsoprovedin1832caseIIfor n=14,andhedidsowhile tryingtoproveitfor n=7.Thislattercaseturnedouttobeespeciallydifficult,andit wasfinallyprovedin1839byGabrielLamé(17951870).

Atthispointinthestory,wefindourselvestwohundredyearsafterFermatwrotehis marginalremark.Scatteredeffortshavebeenmadetosolvetheproblem.Sophie Germainistheonlyonetohavedevotedfocusedefforts,andsomeworkhasbeen doneinthewakeofhertheoremleadingtointerestingresults.Somenewtechniques weredevelopedfordealingwithproblemssimilartoFLTbutnotFLTitself,andthere isagrowingrealizationthattheremaybesomerealmathematicalchallengeinthis problem,afterall,ifithasnotbeensolvedsofar.In1815andthenagainin1818the FrenchAcademyinParisofferedaminorprizefortheproof,whichwasnotawarded [Legendre1823,2],butFLTwasincludedintheAcademy’s GrandPrix onlyin1849 (moreonthisbelow).Lamé’sprooffor n =7wasadifficultone,anditwasperhaps thefirstonethatcomprisedthedevelopmentofnewtechniquesspecificallydevoted tosolvingtheproblem.ThesameLaméwasinvolvedinthemostimportant

7SinceonlyapartofGermain’sworkbecamepublicthroughLegendre’sbook,itwas commonuntilnowtoattributeheronlywiththeprooffor p<100,whereasLegendre wasattributedwithitsextensionforallvaluesupto p<197.[DelCentina2008]is based on a detailed analysis of many of her unpublished manuscripts, and it convincinglyshowsthatGermainactuallyprovedcaseIofFLTforallvaluesoftop

<197.

18 nineteenthcenturymathematicalcrossroaddirectlyrelatedwithFTL,thattookplace inParisin1847,andthatdeservesabroaderdiscussionhere.8

In1847wefindthefirstinstanceofagroupofleadingmathematiciansdevoting serious,focuseddiscussionstothepossibilityofprovingthisbynowwellknown conjecture.Thegroup,gatheredattheParisAcademy,includedsuchstarsas AugustinLouisCauchy(17891857)andJosephLiouville(18091882).Inorderto getacorrectpictureofthesituation,however,oneshouldconstantlykeepinmindthat whilediscussingFLTintheAcademyandtryingnewideasonthisquestion,these mathematiciansweresimultaneouslydevotingtheireffortstoseveralother mathematicalproblems,especiallythoserelatedwithanalysisandmathematical physics.

OnMarch1,1847,Lamépresentedhiscolleagueswithwhathethoughttobea possiblewaytosolvethegeneralcase.Laméusedanideaoriginallysuggestedtohim byLiouville,whichinvolvedafactorizationofasumofintegersintolinearcomplex factors,asfollows:

xn+ yn=( x+ y)( x+ ry )( x+ r2y)…(x+ rn1y)

Here nisanoddnaturalnumber,and risaprimitiverootofunity,namely,acomplex number(r≠1)satisfyingthecondition rn=1(nbeingthelowestsuchpower). Startingfromthisfactorization,Laméwouldapplyanargumentbasedonthemethod ofinfinitedescentinordertoleadtoacontradictionthatwouldproveFLT.Thus, combiningideasofseveralmathematicianslikeFermathimself,Gauss,andLiouville, Laméthoughttobeontherighttracktosolvetheproblem.

TherewerefromthebeginningsomedoubtsaboutthelogicalvalidityofLamé’s argument,andLiouvillehimselfwasamongthosewhomanifestedsuchdoubts. Interestingandsometimespersonallyloadeddiscussionfollowedthispresentation. Twomainissueswereatstake.Ontheonehand,thediscussantsaddressedthevery pressingquestionofwhowasthefirsttointroducewhatideawhichwasdecisivefor theputativeproof.Ontheotherhand,therewasamoretechnical,andmorecrucial

8InthissectionIfollowedthepresentationof[Edwards1977,5975].Thisseminal bookcanbeconsultedfordetailsaboutthetheoremsandproofsmenionedhere.

19 matter,namelythequestionwhetherthefactorizationontherighthandsideofthe aboveequationisunique,asinthecaseofdecompositionintoprimefactorsfor rationalintegers.Asalreadymentioned,theintroductionofGaussianintegers immediatelyraisedthequestionofhowfarthepropertiesofrationalintegersmight extendtothisnewkindofnumbers,anditturnedoutthat,essentially,mostknown propertieswouldindeedapply.Asimilarquestionwasatstakehereforthismore generaldomain,anditisherethatthedisappointingnewscamein,onMay24.That dayLiouvillereadtohisfriendsalettersentfromGermanybyKummer,whohad alsosentanarticlepublishedin1844andthatretrospectivelyinvalidatedLamé’s allegedproofinspiteofthebrilliantideaitinvolved.Kummer’sarticledirectly showedthatthefactorizationinquestionwasnotunique,astacitlyassumedbyLamé.

Kummeralsoinformedthathehaddevelopedatheoryof“idealcomplexnumbers” meanttorestoreakindofuniqueprimefactorizationindomainsofnumbersinwhich, ashehadnoticed,uniquenessmayfail.Thetheoryalsoledtothedefinitionofa certainclassofprimenumbers(withinthedomainoftherationalintegers),latertobe called“regularprimes”.KummernoticedtherelevanceofthiskindofprimestoFLT andprovedthatthetheoremisvalidforallregularprimes.Lateronhefoundan operationalcriterionfortellingwhetherornotagivenprimeisregular,usingtheso called“Bernoullinumbers”.Itturnedout,forinstance,thattheonlyirregularprimes under164are37,59,67,101,103,131,149,and157.After164,thecalculations becameprohibitivelycomplex.Further,Kummerdevelopedcriteriatoprove,givenan irregularprime,ifFLTisvalidforit.InthiswayheprovedFLTseparatelyfor37,59 and67,thusachievingtheveryimpressiveresultthatFLTisvalidforallexponents under100[Kummer1857]. 9

Kummer’sresultsopenedabroadandclearlydefinedavenueforapossible,continued investigationofFLT.Allwhatwasneedednowwastocontinuethesearchfor irregularprimes,forwhichseparateproofscouldthenbeworkedout,accordingto Kummer’scriteria.Thesecriteria,moreover,couldbefurtherelaboratedandrefined inordertoenablemoreefficientandpreciseproceduresofverificationthatFLTwas

9 Kummer’sproof contained some mistakes that were later correctedby successive mathematicians,culminatingin[Vandiver1926].

20 validfortheindividualcasesinquestion.Apparently,Kummerassumedbutdidnot provethatthereareinfinitelymanyregularprimesandthattherewouldbeavery limitedproportionofirregularprimes.Theseassumptionscontinuedtobesharedby many.Buttheinterestingpoint,fromtheperspectiveofthepresentaccount,isthat thisbroadavenuewasfollowedbyveryfewnumbertheoristinthefollowingdecades andrelativelylittleworkwasdoneonFLTuntiltheearlytwentiethcenturyalong theselines.

ThisisnottosaythatKummer’sideaswerecompletelyabandoned.Onthecontrary, theydidleadtoimportantmathematicaldevelopments,butfollowingasomewhat differentdirectionwhereinattemptstoproveFLTplayednorolewhatsoever. ThroughthecombinedeffortsofprominentnumbertheoristslikeRichardDedekind (18311916)andLeopoldKronecker(18231891)thefullelaborationoftheimportant insightscontainedinKummer’stheoryof“idealcomplexnumbers”ledtoacomplete redefinitionofhowfactorizationpropertiesaretobeinvestigated(andeventoa redefinitionof“integers”inthemoregeneraldomainsthatwerenowinvestigated). Themathematicaldisciplinethatintheearlytwentiethcenturybecameknownas “algebraicnumbertheory”actuallyarosefromtheworksofDedekindandKronecker, andeventually,especiallyundertheinfluenceofDedekind’sapproach,gaveriseto whatbecameknownasmoderncommutativealgebraofpervasiveimpactin twentiethcenturymathematics[Corry2004,129136].

TheimportantworkofKummerandtheinfluenceithadinleadingtothe developmentofsomanycentralideasinmodernalgebraisoftenmentionedwhen explainingtheimportanceofFLTforthehistoryofmathematics.Kummer’sattempt tosolveFLT—sothetypicalargumentgoes—motivatedhimtolaunchasignificant lineofresearchthatyieldseminalideasoflastingandpervasiveimportancein mathematics. 10 ThiswouldindeedbeastrongargumentsupportingtheviewofFLT asa“historicallyimportantmathematicalproblem”,wereitnotforthefactthatthe historicalrecordleadsustoaddimportantqualificationstoit.

10 Two prominent places where this opinion is presented are the introduction to

[Hilbert 1902] and [Hensel 1910]. The latter became an often quoted source for stressingthehistoricalimportanceofFLT.Seebelownote14.

21

Inhis1847lettertoLiouvilleKummerstated,indeed,thattheapplicationofthe theoryofidealcomplexnumberstotheproofofFTLhadoccupiedhimforsometime now.Ontheotherhand,heclearlystatedhisopinionthatFLTwas“acuriosityin numbertheory,ratherthanamajoritem.”Infact,verymuchlikeGauss,Kummer declaredthattheproblemofhigherreciprocitywasthe“centraltaskandthepinnacle ofachievementinnumbertheoreticalresearch.”Heconductedimportantresearchin thisfield,followingonthefootstepsofCarlGustavJacobi(18041851).Inhis researchKummerevenadoptedthenotationoriginallyusedbyJacobiwhendealing withreciprocity.Itwasonlyaftermanyefforts,especiallyafterhavingperformed lengthyanddetailedcalculationswithnumbersindomainsthatgeneralizedtheideaof theGaussianintegers,thatKummerrealizedthatthetacitassumptionofunique factorizationwouldbreakdown.Hepublishedonlytwo,relativelyshort,articles whereidealcomplexnumberswereappliedtoFLT:thefirstin1847andthesecond, containinghisinterestingproofofFLTforregularprimes,aslateas1858.Atthe sametime,between1844and1859hepublishedalonglistofdense,significant papersonhigherreciprocity.Higherreciprocity,ratherthanFLT,wasKummer’strue motivationfordevelopingthetheoryofidealcomplexnumbers[Edwards1977, 1977a].

5. Marginality within diversification in number theory (1855-1908)

Thestoryofthedevelopmentofnumbertheoryinthesecondpartofthenineteenth centuryisacomplexone.Ontheonehand,thereareimportantachievementsoflong standingimpactsuchasembodiedintheworksofDedekindandKronecker,orsuch asthosederivedfromtheuseofanalyticapproachesintroducedintheworkof Dirichlet.Ontheotherhand,actualinterestinthefieldonthesideofbroader audiencesofmathematicians(andespeciallyofprominentmathematicians)was definitelyreduced.Itiswellknow,forinstance,thatDedekind’stheoryofidealswas hardlyreadatthetimeofitspublication,bothinitsGermanoriginalandtheninits Frenchtranslationof187677. 11 Thisisnottosay,however,thattherewasnoactual

11 See[Goldstein&Schappacher2007a,6870].

22 researchbeingdoneinnumbertheory.Rather,therewasareorganizationofthefield intoseveralclustersofinterest.Theseclustersgroupedmathematicianswhoshared commoninterestswithinnumbertheory,usedsimilartechniquesandpursuedsimilar objectives.Theypublishedinsimilarjournalsandquotedeachother.Asarule,they representedselfcontainedfieldsofresearchthathardlyintercommunicatedwitheach other. 12

Duringthisperiod,theclusterwheremostoftheactualactivityinnumbertheory developedwasnotconnectedtothosetrendsthateventuallyledtothemainfociof numbertheoreticalresearchattheturnofthetwentiethcentury,suchasthe “algebraic”andthe“analytic”traditions.Rather,thisclusterfocusedonquestions directlyconnectedwithsomeofthebasictopicsdiscussedinGauss’s Disquisitiones , suchasreciprocity,andcyclotomicandDiophantineequations.Itexplicitlyavoided theuseoftechniquesinvolvingcomplexnumbersandanalysis.Atthesametime,it showedaclearinclinationtowardshistoricalaccountsofthediscipline.Contributors tothisclusterincludedinavisiblewaynotonlymathematicians,butalsoengineers, highschoolteachersanduniversityprofessorsfromotherdisciplines.Theycame fromvariouscountriesincludingplaceswithoutwelldevelopedresearchtraditionsin thefield.Remarkably,veryfewGermanswereamongthem.Morethananyother clusterorsubdisciplineinnumbertheory,worksbelongingtothisclusterasarule didnotinvolvehighlysophisticatemathematicalknowledge.Still,someofthem comprisedveryingenuousandinnovativeideas,appearingmostlyintheworkofthe moreprominentmathematiciansthatcontributedhere.ThelatterincludedJames JosephSylvester(18141897),AngeloGennochi(18171889),andEdouardLucas (18421891).Thisclusterdidnotevolveintoafullfledged,schoolofmathematical researchthattrainedstudentsandwassystematicallythought.MostresearchonFLT duringthisperiodcanbeeasilyassociatedwiththisclusterofactivityinnumber theory,andindeed,evenhereitcountedasarathermarginaltrendintermsof attentiondevotedtoit,aswewillseeinthissection.

12 Detailedanalysesoftheseprocessesappearin[Goldstein1994],[Goldstein2007a,

7174].

23

Butevenbeforediscussingsomeoftherelevantresearchinthisperioditisinteresting toassesthestatusofFLTwithinsomecontemporaryexpositorypresentationsofthe field.Indeed,textbooksonthetheoryofnumberswrittenafter1855domentionFLT invariousways,usuallywithsomedidacticmessageinmind,buttheyneverdescribe theproblemasanoutstandinglyimportantone.Inmoreresearchorientedtexts,FLT ishardlymentioned.Iillustratethispointbylookingatthreeprominenttextsofthis kind.

Istartwiththeinfluentialandcomprehensive ReportontheTheoryofumbers presentedbetween1859and1866totheBritishAssociationfortheAdvancementof SciencebyHenryJ.S.Smith(18261883).Smith,Savillianprofessorofat Oxfordsince1860,wastheforemost,perhapstheonly,mathematicianofhistimein theEnglishspeakingworldtrulyknowledgeablewithcurrentdevelopmentsin numbertheory.Healsomadeimportantcontributionsofhisowntothediscipline [Macfarlane1916,5868].The Report aimedatbringingtohisfellowmathematicians intheEnglishspeakingworldanupdatedpictureofthefield,whichhedescribedas ratherneglectedintheBritishcontext.Thisupdatedpicturewouldcomprisea systematicpresentationofthecontributionsinthefieldasithadbeenestablishedby Gauss,andthenfurtherdevelopedbyJacobi,Eisenstein,LegendreandDirichlet,and alsomorerecentlybythecontributionsofKummer,KroneckerandDedekind. FollowingalongthelinesofGauss’ Disquisitiones ,Smithdescribedthefieldas composedbytwomainbranches,andtothemhedevotedthebulkofhisbook:the theoryofcongruencesandthetheoryofhomogeneousforms.Hedescribedthe reasonsfortheimmediateappealofthispartofmathematics,quotingdirectlyfrom Gauss,inthefollowingterms[Smith1894,Vol.1,38]:

Thehigherarithmeticpresentsuswithaninexhaustiblestorehouseofinterestingtruths–of truths, too, which are not isolated, but stand in the closest relation to one another, and betweenwhich,witheachsuccessiveadvanceofthescience,wecontinuallydiscovernew and sometimes wholly unexpected points of contact. A great part of the theories of Arithmetic derive an additional charm from the particularity that we easily arrive by induction at important propositions, which have the simplicity upon them, but the demonstrationofwhichliessodeepasnottobediscovereduntilaftermanyfruitlessefforts; andeventhenitisobtainedbysometediousandartificialprocess,whilethesimplermethods ofprooflongremainhiddenforus.

24

OnemightthinkthatFLTcouldbeaverygoodexamplethatfittedthisdescription andthatitmightusedbySmithtoencouragetheinterestoffellowmathematiciansnot workinginthefield.SmithdescribesFLTasa“celebratedproposition”,andhe devotedlengthyfootnotestodescribeitshistory.Butintermsofmathematicalideas, hedevotedverylittlespacetoit.Inafewpagesheexplainedtheprinciplesof Kummer’scriteriaforprovingthevalidityofFLTforanygivenirregularprime. Indeed,Smithstatedhisbeliefthatitwouldprobablybedifficulttofindanirregular primeforwhichKummer’scriteriawouldnothold[Smith1894,Vol.I,131137]. Fermat’sresultthatSmithdiddiscussindetailandthatheconsistentlyused throughoutwhathecalledinhisbooksimply“Fermat’stheorem”,whichiswhatwe usuallycallnowadays“Fermat’slittletheorem”.

InNovember1876,SmithdeliveredhisretiringpresidentialaddresstotheLondon MathematicalSociety,underthetitle“OnthePresentStateandProspectsofSome BranchesofPureMathematics”.Onceagainheintendedtopresentthetheoryof numbers(apparentlystillneglectedamonghiscolleagues)andtoencourageyoung mathematicianstoundertakeresearchinthefield.Herepeatedthebasicideasand quotationsappearinginhis Report andthistimehealsoaddedwhatheconsideredto beathirdbranchofthedisciplinenotpreviouslymentioned,namelytheanalytic approachtonumbertheory(whichhecalledhere,“thedeterminationofmeanor asymptoticvaluesofarithmeticalfunctions”).Healsodescribedthecurrent,active efforts,originatingwithanideaofLiouville,toinvestigatewhethernumberslike e and πarealgebraicortranscendental.TheproblemsandachievementsthatSmith describedinhisspeechshouldinhisviewconvinceabouttheimportanceanddeep interestthatresearchinthefieldwouldoffertoaspiringmathematicians.Hethussaid [Smith1876,167]:

I do not know that the great achievements of such men as Tchebychef and Riemann can fairlybecitedtoencourageless highly giftedinvestigators;butatleast they mayserveto show two things – first, that nature has placed no insuperable barrier against the further advance of mathematical science in this direction; and that the boundaries of our present knowledgeliesocloseathandthattheinquirerhasnoverylongjourneytotakebeforehe findshimselfintheunknownland.Itisthispeculiarity,perhaps,whichgivessuchperpetual freshnesstohigherarithmetic. Inthisfestiveoccasion,however,whenheusedthisimportantpodiumwiththe explicitlypurposeinmindofpromotingresearchinnumberstheory,itisremarkable thatSmithdidnotevenmentionFLT.

25

Thesecondprominenttextworthyofconsiderationhereisthe Zahlbericht ,published in1897byDavidHilbert(18621943),thenoneoftheforemostnumbertheoristsof theworld.The Zahlbericht wasinitiallycommissionedbytheAssociationofGerman Mathematiciansasanuptodatereportonthestateoftheartinthediscipline.Hilbert indeedsummarizedtheworkofhispredecessorsbuthealsoaddedmanynewresults andsophisticatetechniquesandopenednewavenuesforresearchinthefieldsthat manywouldindeedfollowinthedecadestocome.Itwasthemostcomprehensive andsystematiccompendiumofthetheoryofalgebraicnumberfieldscomposedatthe endofthenineteenthcentury.Theroleplayedbythe Zahlbericht forthedisciplineis verysimilartothatplayedby Disquisitiones onehundredyearsearlier.However,the impactofthisbookgoeswellbeyondthespecificsignificanceofthisorthatresult thatitpresents,andrelatestobroadertrendsofdevelopmentinmathematicsatthe time,andthesemeritabriefdiscussionhere.

IndevelopingthetheoryofalgebraicnumberfieldsonthewakeofKummer’swork onidealcomplexnumbers,KroneckerandDedekindhadmutuallycomplementedthe theorems,proofsandtechniqueselaboratedbyeachother.Nevertheless,they representedtwoverydifferent,andinsomesenseopposed,approachestothevery essenceofmathematicalpractice.Kroneckerrepresentedwhatmaybecalledamore “algorithmic”approach,whereasDedekindwasthequintessentialrepresentativeof thesocalled“conceptual”approach.ThisisnotintendedtomeanthatKronecker introducednonew,abstractandgeneralconceptsorthathederivednoresultsfroman adequateuseofthem.NordoImeantosaythatonefindsnocomputationsin Dedekind.Rather,thepointisthatDedekind’sperspectiveallowedforthe indiscriminateuseofinfinitecollectionsofnumbersdefinedbygeneralabstract properties,whereasKroneckerinsistedontheneedtoprescribethespecific proceduresneededtogeneratetheelementsofsuchcollectionsandtodetermine whetherornottwogivenelementswereoneandthesame.Dedekinddidnotseekor requiresuchproceduresandKroneckerdidnotconsideritlegitimatetoignorethem.

ThechoicesmadebyHilbertinpreparingthe Zahlbericht gaveaclearemphasistothe “conceptual”perspectiveembodiedinDedekind’swork,asopposedtothe “calculational”oneofKronecker.The Zahlbericht thusbecameadecisivefactorin transformingDedekind’sapproachintothedominantoneinalgebraicnumbertheory

26 andrelatedfields.Eventuallyitspreadtoallofalgebra,viatheinfluentialworkof EmmyNoether(18821935),andfromtheretomanyothermathematicaldomains. Indeeditbecameamainstreamcharacteristicoftheentiredisciplineofmathematics throughoutthetwentiethcentury.

IntheintroductiontohiscompendiumHilbertstatedhisviewsonwhatisthemost importanttaskofhisfieldofenquiry.LikeKummer,hestressedtheprimacyofthe problemofreciprocity.UnlikeKummer,however,Hilbertsuggestedtoavoidthe complex,straightforwardcalculationofthekindthathadoriginallyledtohis discoveries.Hilbertthuswrote[Hilbert1998,ix]:

ItisclearthatthetheoryoftheseKummerfieldsrepresentsthehighestpeakreachedonthe mountainoftoday’sknowledgeofarithmetic;fromitwelookoutonthewidepanoramaof thewholeexploreddomainsincealmostallessentialideasandconceptsoffieldtheory,at leastinaspecialsetting,findanapplicationintheproofofthehigherreciprocitylaws.Ihave tried to avoid Kummer’s elaborate computational machinery, so that here too Riemann’s principlemayberealisedandtheproofcompletednotbycalculationsbutpurelybyideas.

HermannMinkowski(18641909)–whowasHilbert’sclosefriendandnoless prominentnumbertheoristthanhim–systematicallypromotedasimilarperspective inhiswork.Hespokeof“theotherDirichletprinciple”,embodyingtheviewthatin mathematics“problemsshouldbesolvedthroughaminimumofblindcalculations andthroughamaximumofforethought”[Minkowski1905].Thedeepinfluenceof approachessuchasespousedbyHilbertandbyMinkowski—againstblindand extensivecalculations—helpsexplainwhyfurthercalculationswithindividualcases wasnotfavorablyencouragedwithinthemainstreamofnumbertheoryinthedecades thatfollowed,aswillbeseenbelow.

Lengthysectionofthe Zahlbericht discusscyclotomicandquadraticfields,aswellas topicsrelatedwithreciprocity.Underthekindofconceptualpointofviewderived fromDedekind,extendingtheresultsofKummeronFLTbycalculationofadditional, individualcaseswasindeedoflittleinterest.Hilbertdevotedafewpagesinthelast sectionofthebooktoFLT,andthereheexaminedtheDiophantineequation αl+ βl+ γl=0forexponents lthatareregularprimes,whilecorrectingamistakeofKummer (whothoughttohaveprovedtheimpossibilityoftheequationforcyclotomicintegers ingeneral,ratherthanjustforrationalintegers).Hilbert’sproof,likemostofthe materialpresentedinthe Zahlbericht reformulatedKummer’sideasintermsof

27 conceptsandtechniquesintroducedbyDedekindfordealingwithalgebraicnumber fields.Butifhedevotedthiskindofspecialattentioninsomepagestotheequation xn + yn= zn,atthesametimehealsolookedatarelatedone,showingthat x4+ y4= z2 hasnosolutionsinGaussianintegers.

ItmaybeworthpointingoutatthispointthatwhileHilbertwasteachinginGöttingen forthefirsttimeaseminaronnumbertheoryalongthelinespursuedinhisreport, FelixKlein(18491925)taught,inparallel,anotherseminarinthesametopic,a somewhatunusualchoiceforhim.Hiscourseamountedtoadiscussionofthetheory ofbinaryquadraticformsseenfromageometricperspective.Hestressedthatthe visual( anschauulich )perspectivehewasfollowingandthe“logicaltreatment” presentedinHilbert’sseminarwerecomplementaryandnotmutuallyexclusive[Klein 189697].Atanyrate,FLTfindsnoplaceinthesyllabusofKlein’sseminar.Norisit mentioned,manyyearslater,whenKleinpublishedhisclassical Lecturesonthe DevelopmentofMathematicsintheineteenthCentury [Klein1926](thoughitmust bestressedthatthisisfarfrombeingabalancedandcomprehensiveaccountofthe disciplineofmathematicsintheperiodcovered,anyway.Rather,itistheauthor’s own,broadperspectiveonit.Numbertheoryatlarge,tobesure,receivesonlyvery littleattentionintheselectures.)

Notlongafterthepublicationofthe Zahlbericht Hilberthadanotherremarkable opportunitytoexpresshisviewsaboutimportantproblemsinthetheoryofnumbers, andinmathematicsingeneral.ThiswasatthesecondInternationalCongressof Mathematiciansheldin1900inParis,whereHilbertgavethenowveryfamoustalk presentingalistofproblemsthatinhisopinionshouldandwouldoccupytheefforts ofmathematiciansinthenewcentury.Intheintroductorysectionofthetalk,Hilbert gavesomegeneralcriteriaforidentifyingimportantmathematicalproblems(andby theway,mostoftheproblemsinhislistdonoteasilyfitintothesecriteria).Healso mentionedthreeexemplaryproblemsfromrecenttimes:theproblemofthepathof quickestdescent,thethreebodyproblemandFLT.ConcerningthelatterHilbertsaid [Hilbert1902,440]:

Theattempttoprovethisimpossibilityoffersastrikingexampleoftheinspiringeffectwhich such a very special and apparently unimportant problem may have upon science. For Kummer,incitedbyFermat'sproblem,wasledtotheintroductionofidealnumbersandto thediscoveryofthelawoftheuniquedecompositionofthenumbersofacyclotomicfield

28

intoidealprimefactors—alawwhichtoday,initsgeneralizationtoanyalgebraicfieldby DedekindandKronecker,standsatthecenterofthemoderntheoryofnumbersandwhose significanceextendsfarbeyondtheboundariesofnumbertheoryintotherealmofalgebra andthetheoryoffunctions.

Asalreadypointedout,thiswasindeedtheprevailingviewthenandforalongtime thereafter,thatattributedhistoricalimportancetoFLTbecauseofitscontribution,via theworkofKummer,totheriseofmodernalgebra.However,aswehavealready seen,higherreciprocity,andnotFLT,wasthereal,mainmotivationbehind Kummer’sefforts.ButthepointIwanttostresshereisthatinspiteofthisstatement andofthediscussionofFLTintheintroductorysection,theproblemwas not includedinthelistofproblemsitself.Hilbertincludednolessthansixproblems directlyrelatedwithnumbertheory,buthedidnotconsiderthatFLTshouldbe amongthem.Thiswasaclearlyconceivedchoice.Amongtheproblemsincluded weretheRiemannconjecture(whichwasbynomeansanobviouschoiceatthetime), and,notsurprisingly,higherreciprocity.Hilbertexplicitlystatedthatthereasonto includetheRiemannconjecturewasthatitssolutionwouldleadtoclarifymanyother problems,suchasforinstance—sohethought—theGoldbachconjecture.Hilbertdid notsingleoutFLTasholdingapromisesimilartothat.Atbest,aroundabout referencetoFLT(butinnowayadirectmentionofit)wasimplicitlycomprisedin thefamoustenthproblemofthelistinwhich,givenaDiophantineequationwithany numberofunknownsandwithrationalintegercoefficients,thechallengeistodevise aprocess,whichcoulddeterminebyafinitenumberofoperationswhetherthe equationissolvableinrationalintegers.Equation(1)wouldbeanexampleofsuchan equation,andapossiblesolutionofthetenthproblemwouldindicateiftheequation hassolutions.IfHilberthadinmindthisconnection,thiswouldonlyplacethe probleminasimilarstatustothatformulatedonehundredyearsearlierbyGauss, namelyasaveryparticularcorollaryofamuchbroaderandinterestingproblem.

Athirdbooktobeconsideredhererelatestoaveryhelpfulsourceofadditional informationonthestatusofFLTafterKummer.Thisisthewellknown,threevolume HistoryoftheTheoryofumbers publishedbetween1919and1923byLeonard EugeneDickson(18751954).Outofclosetoeighthundredpagesandthirtyseven chaptersthatcomposethisbook,Dicksondevotedhislastone,offortyfivepages,to

29 listallpublishedmathematicalworksbearingsomerelationwithFLT. 13 Dickson pronouncedhimselfclearlywithrespecttothestatusFLTasaseparatemathematical problem:“Fermat’sLastTheorem—hewroteintheintroductiontotherelevant chapter—isdevoidofspecialintrinsicimportance,andifafullproofofitisever publisheditwilllooseitsmainsourceofattraction”. 14

Dickson’slistcomprisesabout240itemspublishedafterKummer.Inorderto properlyevaluateitshistoricalimport,however,itisimportanttostressthatalmostall oftheseworksbelongtotheabovementionedclusterofresearchinthedisciplinethat distanceditselffromtheuseofanalyticmethodsoroftechniquessuchasdeveloped byDedekindandKroneckerintheirtheories.Indeed,mostitemslistedareveryshort (typicallybetweenoneandthreepages)andinvolveessentiallyunsophisticated mathematics.Severalarejustsummariesofthecurrentstateofresearchonthe problem,andtheyaretypicallydirectedtoanaudienceofnonexperts.Theyembody thetypicaltextstressingtheoutstandingimportanceoftheproblem,mainlyinorder toenhancethevirtuesoftheirownintendedcontribution(whichingeneraliseither erroneousortrivial).15 Thesepublicationsusuallyappearinobscurejournalsorin

13 Inordertopresentthefullpictureitisimportanttostressthatthethreevolumesof

Dickson’sbookdonotincludeevenachapteronthe law of quadratic reciprocity.

Thisomissionwasnotdue,however,toDickson’sopinionontheimportanceofthis problem,ortoaneglectonhisside.Rather,heintended to write a fourth volume exclusively devoted to it, but for several technical reasons this plan did not materialize.See[Fenster1999].

14 Wefindexactlythesameassessmentalsoin[Dickson 1917, 161], but there he addedthatifaproofwasfoundtheproblemwouldnotlooseits historical importance.

HewascitinghereHensel’sopinion(seeabovenote10).

15 [Calzolari 1855], [Thomas 1859, Ch. 10], [Laporte 1874], [Martone 1887],

[Martone 1888], [Barbette 1910] , [Gérardin 1910]. The same Gérardin edited between1906and1912inNancyajournalentitled“SphinxOedipe.Journalmensuel

30 bookletspublishedbyobscureprivatepublishers,andonecanalsocountamongthem theonlydoctoraldissertationappearinginthelist.16 Moreover,thevastmajorityof theworksappearinginDickson’slistcompriseslightimprovementsoverpreviously provenresultsaboutspecificpropertiesofnumbersthathavesomekindrelevanceto anexistingargumentrelatedwithFLT.Asarule,theauthorsoftheseshortpiecesdo notevencaretomentionthattheirarticlehadanythingtodowithFLT.Evenincases wheretheequationxn+ yn= znisatthefocusofthearticle,thenewresultis occasionallypresentedasimprovingonKummer’sresults,ratherthanasanew solutiontoanopenfamousproblemformulatedtwohundredearlierbyFermat(whose nameisnotevenmentionedinmanycases). 17 Infact,inmanycasesDickson’s decisiontoincludeacertainitemseemstobejustifiedonlyretrospectivelyand indirectly,asitisclearthattheauthorinquestionwas not thinkingofFLTwhenhe publishedthepiece.Insuchcases,weseethatonlyasmallsectionofthearticle containsaspecificresultthatmightbeusedindealingwithFLT,evenifthisisnotthe

de la curiosité, des concours et de mathématiques ”. The journal published several reviewsandreprintsofworksrelatedtoFLT,inlcudingaseriesofarticlespublished between 1853 and 1862 by one Fortuné Landry (1798?), who also found a factorizationof2 64 +1,publishedin[Landry1880].

16 [Rothholz1892]waswritteninGiessenunderthedirectionofEugenNetto(1848

1919).Itconsistsmainlyofareviewofexistingresults,andanelaborationofoneof

Kummer’sresult,leadingtotheconclusionthattheFLTisvalidwhenever x,y,zare lessthan202.

17 Thusforinstance[Mirimanoff1892,1893],bothofwhichdealwiththecaseofthe irregularexponent p=37.Alsoothermathematiciansdicussedthiscasewithspecial interestafterKummer.

31 mainissuediscussedthere. 18 Ofthese,somearenomorethanconjecturesoreven “beliefs”. 19

AconsiderablepartofthemathematiciansmentionedinDickson’saccountofFLT arefarfromprominentandveryoftentheyareabsolutelyobscure.Forsomeofthem onecanfindnoentryundertheirnamesinthemainreviewjournalofthetime,the JahrbuchüberdieFortschrittederMathematik .Ontheotherhand,whenever renownedmathematiciansdoappearinthelist,theyappearwithveryminor,and indeedmarginalworks,orwithreformulationsofoldresultsinmoremodernguise. AninterestingcaseinpointisthatofFerdinandLindemann(18521939),whohad beenHilbert’sdoctoraladvisor,andbecameaveryfamousandwellconnected mathematicianafterthepublication,in1882,ofhisproofofthetranscendenceof π. Afterthisimportantproof,however,Lindemannneverpublishedagainsignificant mathematicalworks.OneplacewherehedidtryhisforceswaspreciselyinFLT,of whichhepublishedfourattemptedproofsbetween1901and1909,allofthem mistaken,asitturnedout.Euler,Lagrange,Legendre,Lamé,Cauchy,Dirichletand KummerareofcourseincludedinthefirstpartofDickson’slistofcontributorsto FLT,butmostoftheprominentGermannumbertheoristsafterKummerdonoteven appear:DedekindandKronecker,Minkowski,KurtHensel(18611914),Alexander Ostrowski(18931986),EmilArtin(18981962),orCarlLudwigSiegel(18961981). IfwelookattheperiodbeforeKummer,thetwomostimportantcontributorstothe

18 Thusforinstance[Jacobi1846].Thisisanarticleenitrelydevotedtotheproblemof quadratic and higher reciprocity and FLT is not mentioned at all. In the last two pages,Jacobipresentedatableofcertainvaluesofintegers m′,thatstatifyaproperty indirectlyrelatedtoaproposedsolutionofFLT,thatDicksonquotesearlier.Dickson wasexplicitingivingonlytheselasttwopagesasreferencehere,andnottheentire article.

19 Thus,thefamousconjecturepresentedinaveryshortnoteofeightlinesin[Catalan

1844]asthe“belief”that xmyn= 1holdsonlyfor3 2–23=1.

32 theoryofhigherreciprocitywereJacobiandGotholdEisenstein(18231852),none ofwhomdevotedanyattentiontoFLT. 20

OfthemathematiciansmentionedbyDickson,thosewiththemostsignificant contributionstoFLTafterKummerwereDimitryMirimanoff(18611945)andArthur Wieferich(18841954). Wieferichprovedin1909,forinstance,thatifthreeintegers x,y,z satisfyxp+ yp= zpandthethreeand parerelativelyprime,then2 p1≡1(mod p2).Mirimanoffthenshowedthatunderthesameconditions,3 p1≡1(mod p2).These tworesults,andsomesimilaronesthatweresporadicallyaddedlateron, 21 were consideredtoimplysignificantprogressinprovingthetheoremsincetheyhelped determinealowerboundforthevalueofintegersforwhichtheDiophantineequation associatedwithcaseIofFLTcouldbesatisfied(andthis,moreover,onlyby considering p,andirrespectiveofthevaluesof x,y,zthatmaysatisfytheequation).

Andyet,eveninthecaseofthesetwomathematiciansitisimportanttosettheir workstheproperhistoricalcontext.Wieferich,forinstance,publishedonlynine papersduringhislifetime.Theydealwithnumbertheoreticquestionsofdiverse nature,butonlyfourofthemgobeyondwhatseemtobeminorremarks.Onlyone amongthelatterdealswithFLT[Wieferich1909],anditestablishesindeedan importantresultthathadasignificantfollowup.Mirimanoff,inturn,wasaversatile mathematicianwithimportantcontributionstosettheory,probabilitiesandnumber theory.Ofabout60publishedarticles,abouttwelvedealwithmattersrelatedwith FLTandonlysixcontainsignificantcontributions.Inanarticlepublishedin1904 [Mirimanoff1904],hepointedoutwithsomepuzzlement,thatsomeimportant criteriadevelopedbyKummerconcerningcaseIofFLThadreceivedverylittle attentionsofarandhadnotbeendulyappreciated.Indeed,onlyonearticlewritten between1857and1904[Cellérier189497]haddealtwiththequestionaddressed herebyMirimanoff,withouthoweverleadingtoanysignificantresult. 22

20 To this one may also add the entire Russian tradition in which no attention whatsoeverseemstohavebeendevotedtoFLT.See,forinstance,[Delone2005].

21 Somereferencesappearin[Ribenboim1999,362].

22 See[Vandiver1952].

33

WethusseethattheinformationcontainedinDickson’ssectiononFLT,whensetin theproperhistoricalcontext,indicatestheratherlowdegreeofdirectmathematical interestarousedbyFLTinthedecadesfollowingKummer’scontributions,andthe relativelylittle,realeffortdevotedbymathematicianstotheproblem.

6. The Wolfskehl Prize and its aftermath

AninterestingturnofeventsconcerningFLTandthelegendaroundittookplacein 1908,whentheGöttingenRoyalSocietyofSciencesinstitutedaprizeof100,000 markstothefirstpersontopublishacompleteandcorrectproofofthetheorem.The fundwasbequeathedaspartofthewillofPaulWolfskehl(18561906)thesonofa familyofwealthyJewishbankers.Accordingtothelegend,repeatedinmanysources (includingSingh),Wolfskehlwasdepressedbecauseoftheunreciprocatedloveofa “mysteriouswoman”,whose“identityhasneverbeenestablished”.Wolfskehl decidedtocommitsuicide,buthisdecisiondidnotmaterialize,accordingtothe legend,becauseinhislasthourshestartedtobrowsethroughKummer’sworkon FLT.Hebecamesoabsorbedinhisreadingandinthethoughtthathemightfinally contributetotheeffortstoproveFLT,thatthecarefullyplannedtimeforcarryingout histragicproject—midnight,whatelse?—passedwithoutnotice,and“hisdespairand sorrowevaporated”.Themoneyhedecidedtodevotetotheprizewasatokenof recognitiontothevalueofmathematicsand,moreparticularly,tothetheoremthat “renewed[Wolfskehl’s]desireforlife”[Singh1997,122129].

In1997theKasselmathematicianKlausBarnerdecidedtofindoutsomesolidfacts aboutthemostfamousphilanthropistinthehistoryofmathematics.Thefacts pertainingtothelifeofWolfskehlsensiblydifferfromthelegend[Barner1997]. Wolfskehlgraduatedinmedicinein1880,apparentlywithadissertationin ophthalmology.Asastudent,earlysymptomsofmultiplesclerosisstartedtoappear, andWolfskehlrealizedthatafutureasaphysicianwasratheruncertainforhim.He thusdecidedtoswitchtomathematics.Between1881and1883hestudiedatBerlin, whereheattendedKummer’slectures.Wolfskehl’sinterestin,andknowledgeof, FLTdatebacktothoseyears.Heevenpublishedsomeworkinalgebraicnumber theory.In1890hecompletelylosthismobilityandthefamilyconvincedhimto marry,sothatsomeonewouldcontinuetotakecareofhim.Unfortunately,thechoice

34 ofthebrideseemstohavebeenunsuccessfuland,accordingtoBarner’sresearch, Wolfskehl’slifebecamerathermiserableaftermarriagein1903.Andthen,in1905, heindeedchangedhiswillonbehalfofhislife’sonlytruelove,thetheoryof numbers,whichgavesomemeaningtohislast,apparentlyunfortunateyears.Perhaps thewishtoreducetosomeextentthecapitalbestowedtohisfuturewidowplayeda significantroleinthedecision.Atanyrate,ifWolfskehleverconsideredcommitting suicidethereasonbehindsuchadecisionwasthedeepdepressionthataffectedhim followinghisdisease,andnotbecauseabrokenheartcausedbyanunknownlady. FLTdidnotsavehislifeeventhough,aspartofhisinterestinthetheoryofnumbers, itmayhavegivenhimsomecomfort.

Arathersurprising,andtotallyoverlooked,factrelatedwiththeestablishmentofthe Wolfskehlprizeisthatithadanalmostimmediateeffectontheamountofwork devotedtoFLT,andnotonlybyamateurs(asitiswellknown)butalsoamong professional,andsometimesprominent,mathematicians.Beforediscussingthis interestingpointingreaterdetail,however,itisrelevanttocommentonprevious prizesthatwereofferedinrelationwithFLT,astheimportanceattributedtothese earlierprizeshasoftenbeenoverstated.Alsointhiscase,somehistoricalcontext helpsclarifyingthecorrectproportions.

Itseemsthatthefirsttimeaprizewasofferedforwouldbesolversoftheproblem wasonDecember1815.Theprize,whichapparentlyrekindledSophieGermain’s interestintheproblemafterhavingdevotedsomeyearstoelasticitytheory,comprised agoldenmedalvaluedinthreethousandfrancs.Theannouncementextolledthegreat progressundergonebythetheoryofnumberssincethetimeofFermat,butalso referredtotwoofthe“maintheorems”dueto“thisillustrioussage”thathadremained unprovedinthegeneralcase.Cauchy,theyindicated,hadjustprovedtheone concerningthepolynomialnumbers,andhisproofhadelicitedthepraisesofthe geometers.Onlyoneresult,then,remainednowtobeproved,andthatwasFLT.The prizewasbeingofferedashomageto“thememoryofoneofthesageswhohad honoredFrancethemost”,andalsoasanattempttoofferthegeometerstheoccasion toperfectthispartofscience.Theexpectedgeneralproofshouldbedeliveredbefore

35

Januaryof1818,whichdidnotmaterialize. 23 Indeed,wedonotknowofany mathematician,otherthanGermain,whodevotedsomeeffortstoprovethetheoremat thistime,onthewakeoftheoffer.

FLTwasincludedinthe GrandPrix ofmathematicsonlyin1849,anditwas postponedseveraltimes.FivecompetingmemoirswerepresentedtotheAcademyin 1850andelevenin1853,butnoneofthesewasdeemedworthyoftheprize.Finally, in1856itwasdecidedthattheprizewouldgotoKummer–whohadnotpresented himselfasacompetitor–forhis“beautiful”worksontherootsofunityandcomplex numbers. 24 Inexplainingwhythisproblemwaschosen,theproceedingsofthe Academyusedarathermoderateformulation:

AsrecentworksbyseveralgeometershavedirectedattentiontoFermat’slasttheorem,and have notably advanced the question, even for the general case, the Academy proposes to removethelastdifficultiesthatstillremaininthissubject.

Inboththeannouncementsoftheprizes(1815and1849)themessageisthattheprize mightencourageworkthatwouldleadtocompleteataskthatwaslongoverdueand thusfinallyputthisenticingandbynowsomewhatmysteriousriddletorest.

AlsotheRoyalBelgianAcademydevotedin1883itsannualcontesttoaproofof FLT.Thecommitteecomprisedonlyonerelativelywellknownmathematician, EugèneCatalan(18141894),whoindeedhaddonesomeworkinnumbertheoryand evenonFLT.Theothertwo,PaulMansion(18441919)andJosephdeTilly(1837 1906),weremuchlessso.Onlytwomemoirswerepresentedtothiscompetitionand theywerenotconsideredtobeworthyoftheprize.25

23 See Académiedessciences (France).Procèsverbauxdesséancesdel'Académie ,

Vol.5.18121815,p.596.

24 TheGrandPrixwasusuallyannouncedinthe Comptesrendushebdomadairesdes séancesdel’Académiedessciences .SeeVol.29(1849),23;Vol.30(1850),26364;

Vol.35(1852),91920;Vol.44(1857),158.

25 Reportsappearin BulletinAcad.R.Belgique (3),6(1883),81419,82023,82332.

36

TheWolfskehlprizebecamemuchmorefamousthanthepreviousonesdevotedto FLTandindeeditgaverisetoaflurryofworks.Theconsiderableamountofmoney promisedtothewouldbesuccessfulsolverseemstohavebeenmorepersuasiveabout theimportanceofdevotingattentiontotheproblem,thananyotherkindofpurely mathematicalconsideration.Evenbeforetheprizewasestablished,theoneaspectin whichFLTcouldsafelyclaimprecedenceoveranyothermathematicalproblem concernedtheamountoffalseproofsofitthathadbeenpublished.Theannouncement oftheprizeboostedthistendencytonew,previouslyunimaginabledimensions.More thanthousandfalseproofswerepublishedbetween1908and1912alone. 26 The journal ArchivderMathematikundPhysik ,devotedabovealltohighschoolteachers, initiatedaspecialsectionforFLTanduntil1911ithadalreadypublishedmorethan 111proofsacknowledgedtobewrong.

Interestingly,however,notonlyamateursorobscuremathematicianswereledto increasedactivityaroundFLT.Wieferich,asalreadymentioned,publishedhis contributionsin1909,andindeed,theWolfskehlfundpaidhimanamountof100 marksinrecognitionfortheprogressachievedinthesolutionoftheproblem.Also MirimanoffpublishedsixarticlesonFLTafter1909,aboutsixyearsafternothaving publishedanythingonthisquestion.Itishardtodetermineif,andtowhatextent,the worksofthesetwomathematiciansweredirectlymotivatedbytheprize.Butwealso findtopratemathematicianslikePhilipFurtwängler(18691940),ErichHecke (18871947),FelixBernstein(18781956),andFerdinandGeorgFrobenius(1849 1917)whopublishedworksonFLTforthefirsttimearoundtheseyears[Bernstein 1910,1910a;Frobenius1909,1910;Furtwängler1910,1912;Hecke1910].Allof theseworksareconnectedtoKummer’scriteriainvariouswaysaswellaswiththe recentadvancesbyWieferichandMirimanoff.Adirectsequelofthisthreadcanbe foundaslateas1922inanarticlebyRudolfFueter(18801950),adistinguished numbertheoristpupilofHilbert[Fueter1922]. 26 See[Lietzmann1912,63].[Ribenboim1999,381388]addsinformationabout falseorinsufficientproofspublishedthroughouttheyears.Theamountof unpublishedwrongproofsthateverreachedthedesksofmathematicianswhowere publiclyknowntobeassociatedwithFLTcannotevenbeestimated.

37

Itseemsmuchmorethanpurecoincidencethatalltheseworkswerepublishedonthe wakeoftheannouncementoftheprize.Inhishighlyproductivecareer,Bernstein publishedimportantworksonsettheoryandonstatistics.Hecompleteda Habilitation thesisunderHilbertonclassfieldtheoryandpublishedtwoshortarticles relatedtothis[Bernstein1903,1904].Butthen,theonlytimeheeverreturnedto numbertheorywasin1910,whenhepublishedthisarticleonFLT.Similaristhecase ofHecke,adistinguishednumbertheoristwhoseonlycontributiontoFLTwasthis one.Inawellknowntextbookpublishedin1923[Hecke1923],hedidnoteven mentionFLT.NolessprominentwasFurtwängler,whopublishedthemostimportant contributionstothequestionofhigherreciprocitysomeyearslater.Inhiscareerhe publishedonlytwoarticlesonFLT,bothofthemsoonaftertheprizewasestablished [Furtwängler1910,1912].Furtwänglerexplicitlyindicatedinafootnotetohis1910 articlethattherecentawakeningofinterestinFLTcreatedbytheannouncementof theprizewasthedirectmotivationforpublishinghisresultswithoutfurtherdelay, eventhoughthecurrentstateofhisresearchonthetopicdidnotreallysatisfyhim. Finally,Frobenius–thedominantfigureofBerlinmathematicsbetween1892and 1917–publishedsignificantresearchinanenormousvarietyoffields,andonlyvery littleonnumbertheory.Hisonlyimportantcontributiontothediscipline(theso calledFrobeniusdensitytheorem[Frobenius1896])waspublishedmorethana decadebeforehisfirstarticleonFLT.Thelatterconsistedinarefinementof Wieferichproofsandresults.Acoupleofyearslater,heprovedacongruencesimilar toWieferich’s,forthebases11and17,aswellasforbases7, 13,and19,provided p =6 n1[Frobenius1914].Theimpressioncreatedbyalltheseexamplesis strengthenedbyanexplicitassertionfoundinanappendixtothe1913French translationof Zahlbericht writtenbyThéophileGot.Thisappendixwasdevotedto presentingasummaryofrecentworkonFLTupto1911,andthereasonthatjustified itsinclusioninthiseditionwasthe“revivalofinterestinthequestion”ofFLT arousedbythe“recentcreationoftheWolfskehlprize”[Hilbert1913,325].

Thereisinterestingevidenceindicatingthatthesituationbroughtaboutbythe Wolfskhelprizeproduceddiscomfortamongmanymathematicians.Thatisfor instancethecaseofOskarPerron(18801975),aversatilemathematicianwithavery longcareerandcontributionstomanyfields,includingnumbertheory.Amongother things,hehadbeenincharge,withtwoothercolleagues,ofreportinginthe Archiv

38 derMathematikundPhysikonputativeproofsofFLT.Inhis1911inaugurallecture ontakingachairofmathematicsatTübingen(“Ontruthanderrorinmathematics”), heinterestinglyreferredtohisrecentexperienceasareaderofsomanyfailed attemptsbyamateurs.Hecomparedthestatusofmathematicswiththatofother sciencesintermsofpublicawarenesstothecurrentstateofresearch,whilelamenting thedisadvantageoussituationofmathematicsinthisregard.Amongotherthingshe alsosaidthefollowing[Perron1911,197]:

Strangely enough, however, there are a few problems in mathematics that have always arousedtheinterestofthelaymen,andremarkably,ithasalwaysbeentheleastcompetent whohavewastedtheirtimeinvainuponthem.Iamremindedofthetrisectionoftheangle andofthequadratureofthecircle.However,thosewhohavedealtwiththeseproblemsand stilldealwiththemnowadays,eventhoughtheyhavebeensettledforalongtime,arelikely to be utterly unable to indicate adequately what is at stake. And recently also Fermat’s theoremhasjoinedthecategoryofpopularproblems,aftertheprizeof100,000marksforits solution has awaken a previously unsuspected “scientific” eagerness in much too many persons.

Onecanonlywondertowhatextenthisviewsweresharedbyothers,butthereare twointerestingtestimoniesthatpointtothesamedirection.Thefirstappearsin Klein’swellknown ElementaryMathematicsfromanAdvancedStandpoint [Klein 1939].Likeothersbeforehim,Kleinstressedthattheinterestinthisproblemlaidin thefactthatattemptstosolveithadbeeninvainthusfar.ForKlein,itwaslikelythat theexpectedproofwouldcomefromthedirectionopenedbyKummer,andatthe sametimeitwasunlikelythatFermatcouldhavehadinmindaproofrelatedwiththat conceptualdirection.Thus,hewrote,“wemustindeedbelievethathesucceededin hisproofbyvirtueofanespeciallyfortunatesimpleidea”(p.48).Hethenreferredto thedramaticchangeundergonebythestatusoftheproblemaftertheWolfskehlprize wasestablished,andpointedoutthat,whilemathematicianstypicallyunderstoodthe potentialdifficultyinvolvedinsolvingtheproblem,“thegreatpublicthinks otherwise”.Hewentontodescribewithopendisgustthe“prodigiousheapofalleged ‘proofs”thatwerereceivedsincethepricewasannounced.Theseweresentbypeople fromallwalksoflife,including“engineers,schoolteachers,clergymen,onebanker, manywomen”,andwhatwascommontoallofthemwasthattheyhad“noideaofthe seriousmathematicalnatureoftheproblem…withtheinevitableresultthattheir workisnonsense”(p.49).

39

ThesecondtestimonycomesfromatextbyWaltherLietzmann(18801959). Lietzmanncompletedin1904hisdissertationinGöttingenunderHilbert,witha thesisonbiquadraticreciprocity.Lateronhecontinuedtodosomeresearchonhigher reciprocitylaws[Lietzmann1904,1905].Hebecameahighschoolteacherand principal,from1919to1946,ofthe FelixKleinGymnasium inGöttingen.He publishedextensivelyondidacticsofmathematics.ThroughouttheyearsLietzmann remainedinclosecontactwithHilbert. 27 Therefore,itdoesnotseemfarfetchedto assumethatviewsexpressedbyLietzmannagreedtoalargeextentwiththoseof Hilbert.Atanyrate,itisilluminatingtoseewhathehastosayaboutFLTinabooklet devotedtothePythagoreantheorem,firstpublishedin1912andrepublishedin successiveneweditionsuntil1965.

“Fermat’sproblemwouldnotbeoneveryone’smouth”,Lietzmannsaid,wereitnot fortheWolfkshelprize.Lietzmannindicatedwithsatisfactionthatwhilenoonehad yetbeenawardedthemoneyoftheprize(except,asalreadysaid,asmallamountto Wieferich),Hilbert,asheadoftheprizecommittee,wasmakingaverygooduseof theinterestsyieldbythefund.Indeed,throughouttheyearsHilbertorganizedaseries ofWolfskehllecturesinGöttingen,wherethemostprominentphysicistsofthetime wereinvitedtodiscusspressing,openissuesofthediscipline.Someofthesemeetings becamerealmilestonesinthehistoryofphysics,suchasaseriesoftalksdeliveredby in1922NielsBohr(18851962),wherehepresentedforthefirsttimetoarelevant audience,hisgroundbreakingideasaboutthestructureoftheatom.28 Lietzmannalso quotedafamousHilbertcommentregardingFLT:“Fortunately,thereisno mathematicianexceptmewhoisinapositiontosolvethisquestion.However,Ido

27 See[Fladt1960];[Reid1969,89;212213].

28 The various Wolfskehl lectures are described passim in [Corry 2004a]. For

Einstein’s lecture, see pp. 321326. For Bohr, see pp. 411414. In an unintended sense, FLT led, through the Wolfskehl prize, the Wolfskehl lectures and Hilbert’s intiative,tothemostdirect,significant,andunlikelycontributionofnumbertheoryto theoreticalphsyics.

40 notintendtoslaughtermyselfthegoosethatlaysthegoldeneggs”. 29 FLTmayhave beenconsideredperhapsdifficult,butnotimportantenoughsoastobeworththetime andeffortsofaHilbert,andsothatitwouldjustifylosingthismoney.InLietzmann’s opinion,moreover,theconsequencesofthecreationoftheprizeweredreadful (fürchterlich ).Hethuswrote,inaspiritsimilartoPerron[Lietzmann1912,63]:

In the past, wellknown mathematicians, but above all editors of mathematical journals, receivedeverynowandthenanattemptedsolutiontotheproblemofthequadratureofthe circleandthetrisectionoftheangle,eventhoughtheimpossibilityofsuchconstructionswith straightedgeandcompasshasbeenfullydemonstrated.NowadaystheFermatproblemtakes theplaceoftheseconstructions,sinceherealsoresonantcoinsluresidebysidewithfame.

Facedwithmostlytriviallymistakenproofs,Lietzmanncommented(partlyamused andpartlyannoyed)thatthesendersmustbelievethatmathematiciansaretrulystupid peopleiftheywereofferingsuchahighamountofmoneyforaquestionthatcanbe solvedintwolinesofelementarycalculations.Lietzmanncomplainedthateventhe firsteditionofhisownbooklet,inspiteofhiswarnings,hadledtoadditionalletters withattemptedproofs.Ontheotherhand,aswiththeyearsthefundlostmostofits value,Lietzmannremarkedinlatereditionsofhisbookthatthecontinuedflowof attemptshadrecededandthatthiswasperhapstheonlypositiveconsequenceof interwarhyperinflation.Heconcludedwiththefollowingcomment[Lietzmann1965, 96]:

Forwhomthisisamatterofmoney,hewillnowhavetodowithout.Butwhoeverdealswith this problem out of love for mathematics, to him I can advise to divert his urge to mathematical activity into other directions, in which the prospects for satisfaction, and perhapsevenforsomeresearchresults,aregranted.

AnotherGöttingenmathematicianwhosenamebecameassociatedwithFLTandthe Wolfskehlprize,andnotpreciselyinapositivesense,wastheleadingnumbertheorist EdmundLandau(18771938).LandauwasadistinguishedBerlinmathematicianwho in1909wasappointedtoGöttingenfollowingthesuddendeathofMinkowski.Soon 29 This qoutation appears differently formulated in various contexts, but always as hearsay.Lietzmanndidnotquoteitinthefirsteditionofhisbook,in1912.Itdoes appearintheseventheditionof1965.

41 afterhisarrivalhewascommissionedwithhandlingtheWolfskhelprize,andthe dreary,unendingcorrespondenceassociatedwithit.Inordertocopewiththisrather unpleasanttask,itiswellknownthatLandauprintedastandardanswerinthe followingterms,

Dear ...... ,

Thank you for your manuscript on the proof of Fermat's Last Theorem. The first mistake is on: Page ...... Line ..... This invalidates the proof.

Professor E. M. Landau Hewouldthenaskastudenttoreadanymanuscriptsentandtofillinthemissing details.Forthisreasonalone,butpossiblybecausehislackofdirectinterestinthe problem,LandauwasneverenthusiasticaboutFLTandtherearetwointeresting piecesofevidenceforthat.AttheInternationalCongressofMathematiciansheldin 1912atCambridge,UK,Landauwasinvitedtogiveaplenarylecture.Thetopicof histalkechoedtosomeextentthatofHilbertin1900anditstitlewas“Solvedand UnsolvedProblemsintheTheoryofNumbers”[Landau1912].Abouttwothirdsof theproblemsandresultsdiscussedbelongedtoLandau’sownwork,andfortherest heusedthisopportunityalsotoaddhisownconsiderationsaboutwhatothershad achievedinthefield.ThemaintopicwasthedistributionofprimesandtheRiemann Zetafunction.Thetalkalsodiscussedseveralothertopicsofanalyticnumbertheory andthespecialfunctionsdefinedinit.LikeSmithin1867beforeapurelyBritish audience,Landaustillremarkedin1912thathisfieldwasessentiallyunknownamong mathematiciansingeneral.Thedifficultyofitsmethods,hestressed,hasnothelped attractingmanycolleaguestobecomeacquaintedwiththebeautifulresultsofthis theory.Heusedthisopportunitytopresentthemainchallengesandimportantopen problemsofthefield.Asonemayalreadyexpect,FLTwasnotevenmentioned.

Thesecondpieceofevidencecomesfromaratherobscure,butindeeduniquesource. In1927Landauacceptedthechallengetobecomethefirstprofessorofmathematics inthenewlyestablishedHebrewUniversityinJerusalem.HemovedtoMandatory Palestinein1927withhisfamily,intentonestablishingresidenceinJerusalem,a ratherremoteandprovincialtownatthetime.Thingsdidnotdevelopassmoothlyas hewouldhavewished,andtheLandaufamilyreturnedtoGermanyoneandahalf

42 yearlater.Still,theLandauspiritleftastrongimprintintheincipientmathematical communitythatwouldeventuallyturnintotheprestigiousJerusalemschoolof mathematics.In1925,twoyearsbeforehismovetoJerusalem,Landauhadbeen invitedtogiveanofficialspeechduringtheactofinaugurationoftheHebrew University.Thetextofthisspeechisperhapsthefirsttextdealingwithasubjectof advancedmathematicsinmodernHebrew[Katz2004].Landauusedonceagainthe title“SolvedandUnsolvedQuestionsinElementaryNumberTheory”,butthistime heaimedtoanaudienceoflaymen.Infact,Landau’slistcontainsexactly23 problemslikeHilbert’s,andLandaufounditadequatetoexplainwhyhechose preciselythisnumber,namely,because23isaprimenumber,whichbefitsverymuch thetopicoftheproblemscoveredbythelist.Onecanhardlyimagineanyoneinthe audiencewhomayhaveeverheardaboutHilbert’slist,alistthatwassurelypresent inLandau’smindwhenpreparinghisspeech.

InthisveryfestiveoccasionwecannotimaginethatLandau—anextremely meticulousmathematiciananyway,whowascarefulabouteverywordheeverchose foratext—preparedhislistotherthanwithgreatcareandwithoutanyrush.Afterall, hewasabouttopresenttherespectableaudienceofgatheredinMountScopusto inauguratethenewuniversityoftheJewishpeopleintheLandofIsraelwiththeir firstglimpseaftertwothousandyearsintothecurrentstatusoftheclassicaldiscipline ofarithmetic.Afulldescriptionofthelistiswellbeyondthescopeofthisarticle. Still,itisimportanttostressthatinspiteoftheword‘elementary’appearinginthe title,thelistalsoincludedsomeratheradvancedproblemsassociatedwithboththe analyticandthealgebraictraditioninnumbertheory.FLT,tobesure,didnotappear there.Infact,alsotheRiemannconjecturethatwasatthefocusofhis1912lecture wasleftoutofthislist.Buttakingintoconsiderationthekindofaudienceaddressed hereandthecontextofthetalk,thisdecisionmayseemjustifiedbytheapparent difficultyinexplainingtheconjecture.Thisdifficulty,ofcourse,doesnotexistinthe caseofFLT.ItsabsencecanonlybetakenasanindicationofLandau’slackof attraction,orperhapsevennegativeattitude,towardsit.

43

7. FLT in the twentieth century: developing old ideas, discovering new connections

Sidebysidewiththenegativereactionsdiscussedabove,onecanalsoindicateafter 1915agraduallyincreasingtideoftextsthatreachedarelativelybroadcircleof readersandthatconsistentlystressedthehistoricalimportanceofFLTwhile explainingthedevelopmentofthemain,relatedideas.Asalreadymentioned,inhis threevolumebookDicksonstatedveryclearlyhisopinionaboutthelackof mathematical importanceofFLT.Butina1917articlethatisoftencitedin contemporaryaccounts,hestressedthatthe historical importanceofFLTwouldnever diminishevenifacompleteproofwasfound.Thisimportancestemmed,ofcourse, fromtheriseofthealgebraictheoryofnumbersinthewakeofKummer’swork, whichDicksondescribed,likeothersbeforehim,ashavingbeencreatedinorderto dealwithFLT.Dickson’s1917papergaveasystematicandverysympatheticaccount oftherelevantideas,especiallyconcerningKummer’scontributions.

AnotherinterestingexampleappearsintheworkofPaulBachmann(18371920). BachmannhadstudiedwithDirichletandKummer,andwasalifelongclosefriendof Dedekind.Hepublishedseveralcomprehensivetextbooksonthetheoryofnumbers thatwerewidelycirculatedandusedintheGermanspeakingworld[Bachmann1892 1923;19021910].Inallthesetextbooks,FLTreceivedverylittleattention.Inthe historicalintroductiontooneofhisbooks,Bachmanwroteatlengthaboutthe decisiveinfluenceofFermatinshapingthefuturedevelopmentofthediscipline [Bachman1892].HementionedFLT,butonlyinpassing,asoneamongalonglistof problemsthatFermatbequeathedtocominggenerations.Itspeculiaritywasthateven prominentmathematicianshadfailedtosolveit.Inthevariouschaptersofthebook, however,theproblemwasnotevendiscussed.Hisbookof1902wasanelementary introductiontothetheoryofnumbers,andFLTisdiscussedtheretowardstheend [Bachman1902,458476].Bachmandescribedthemostelementarytechniques associatedwithsomeknownproofs.Thepresentationwasrathersuperficialtothe extentthatBachmannclaimedwronglythatallprimesunder100areregular(p.461, buthecorrectedthisinaErrataonp.480).Butthenin1919Bachmannpublisheda generalaccountofFLTanditshistorythatbecameaverypopularandfrequently quotedsource[Bachmann1919].Bachmannsuggestedwithevidentdisgustthat followingthecreationoftheWolfskehlprizeanimmenseamountofnonprofessional

44 dilettanteshadinundatedthemathematicalliteraturewiththeirfailedattempts.Still, hefoundthatmanyideasthathaddevelopedinrelationwithFLTwereofenduring mathematicalimportance,andhisbookwasanattempttopresentthoseideastonon specialistinnumbertheory.

AthirdandimportantexampleisthatofLouisMordell(18881972).Mordellwasa leadingauthorityinthefieldofDiophantineequations.Earlyinhiscareerhehad studiedthesolutionsof y2= x3+ k,anequationtowhichalsoFermathaddevoted someattention.IncombinationwitharesultpreviouslyobtainedbyAxelThue (1863–1922),butunknowntoMordellatthetime,hisworkimpliedthatthisequation hadonlyfinitelymanysolutions.In1912hewasawardedtheSmithPrizeforhis workontheequationthatnowisassociatedwithhisname[Davenport1964].Mordell alsomadeimportantcontributionstothetheoryofellipticcurves,thetheorywithin whichWiles’proofwouldbeformulatedmanyyearslater.Afamousconjecturehe advancedin1922aboutrationalsolutionsofcertainDiophantineequationsimplied thatfor n>3, xn+ yn= zncouldhaveatmostafinitenumberofprimitiveinteger solutions.Theconjecturewasprovedin1983byGerdFaltings.Thisresultsignified, onthefaceofit,averymeaningfuladvancetowardsapossiblegeneralproofofFLT, butnofurtherprogresswasmadeonit,andeventuallyWiles’proofcamefroma differentdirection.

Mordellwasamongthefirstprominentnumbertheoriststospeakconsistentlyabout thehistoricalimportanceofFLTandtodosowhileaddressingvariouskindsof audiences.InMarch1920MordellgaveaseriesofthreepubliclecturesatBirkbeck College,London,fullydevotedtoFLT,andtoexplainthemethodsthathadbeen developedthroughouttheyearsintheattempttoproveit.Theselectureswere intendedforpersonswithgeneralmathematicalbackground,butnotnecessarilyin numbertheory[Mordell1921].InNovember1927helecturedattheManchester LiteraryandPhilosophicalSocietyonrecentadvancesinnumbertheorytryingto conveytoalayaudiencetheexcitementofhisfieldofresearch[Mordell1928].FLT wasoneofthesixproblemshechose,andsowasthealreadymentionedEuler conjecture(forwhichElkiesgaveacounterexamplein1988).LikeDicksonbefore him,Mordellstressedaboveallthehistorical,asopposedtointrinsicmathematical, importanceoftheproblem.Infact,Mordellpreparedhislecturesonthebasisofthe informationcontainedinDickson’sandBachmann’stexts,andfollowingasimilarly

45 sympatheticapproach.Dickson,BachmannandMordelltogetherestablishedthekind ofdiscourseaboutFLTanditshistorythatwoulddominatemanylaterpresentations ofthesubject.

MordellwasSadleirianprofessorofmathematicsatCambridgebetween1945and 1953.Inhisinaugurallecture,hediscussedagaintheDiophantineequationwith whichheopenedhiscareer, y2= x3+ k. Mordellfounditnecessarytojustifybefore hisownmathematicalcolleagues,who“arefamiliarwithobviouslyimportantand abstrusebranchesofmathematics”,whyinsuchfestiveanoccasionhehadchosena questionthatmayseem“insignificantandremote”tothem.Thathefelttheneedfor suchajustificationsaysmuchaboutthestatusofthiskindofquestionswithinthe profession.Hisexplanationputthestressonthesurprisinglylongperiodoftimethat theseproblemshadstoodunsolved.Hethussaid[Mordell1947,56]:

Mostofthemathematicalknowledgeoftheperiod16001700,asfarasalgebra,geometry and calculus are concerned, would be described now as being thoroughly elementary and completelyabsorbedinthebodyofknowledge,withallitspossibilitiesexhaustedlongsince. This,however,doesnotapplytothequestionsintheTheoryofNumbersdiscussedatthat time, and there are several of permanent interest which have not sunk into anonymous obscurity.

Hementionedthreeexamplesofthis:thePellequation(actuallysolvedinthe seventeenthcentury),FLTandtheequation y2= x3+ k.Inhistalk,likeinhisentire career,MordellfocusedonthelatterequationratherthanonFLT.Interestingly, MordellexplainedhowFermathadposedthisquestionasachallengetoEnglish mathematicians,followingtheworkofBachet,whowasthefirsttodealwithit. Fermathadaskedifthereisanothersquare,otherthan25,thatwhenaddedto2makes acube.Fermatdeclaredtohavediscovered“anexceedinglybeautifulandsubtle methodwhichenablesmetosolvesuchquestionsinintegersandwhichwasnot knowntoBachetnottoanyotherwithwhosewritings”hewasfamiliar.ButMordell didnotbelievethatFermathadindeeddiscoveredsuchamethod.

LikeFLT,alsotheDiophantineequationthatattractedMordell’sinteresthadbeen givensomeattentionbyEuler,Dirichlet,Legendreandothers.Mordell’sownwork, however,openedanewdirectionthatconsideredrationalpointsofcubiccurvesasa maintoolforfindingallintegersolutionsoftheequation.Indeed,thiscanbeseenas partofabroadertrainofideasinwhichsignificantapplicationsofalgebraicgeometry

46 anditsmethodswereappliedtoproblemsrelatedwithDiophantineequations.Among itsearlycontributionsonefindsworksbyHenriPoincaré(18541912)attheturnof thetwentiethcentury[Poincaré1901],anditisremarkablethatalsoAndréWeil (19061998)(onwhoseworkmoreissaidbelow)participatedinitwithhisearlier works[Weil1928,Hindry1999].“Imustemphasize–Mordellwrotewhen explainingtheapproachfollowedinpreviousworks–thatIamnotunderestimating thepossibilitiesofelementarymathematicsbywhichdifficultresultsmayoftenbe proved.”Buthewasawareofpursuingnowatotallydifferentpointofview,when tryingtofindcertainrationalsolutionsforthecubiccurvesthatwererelatedwithhis equation.Hewrote[Mordell1947,28]:

I wasrashenoughto writein1921thattheprospects of any immediate solution of such problemsappearedthenalmostasremoteasthatofdiscoveringanyknowledgeconcerning the chemical constitution of the stars appeared in say, 1800. This was not altogether an unjustifiableview,sinceamathematicianofcourseneverknowswhetherthesolutionofa difficultproblemrequiresprinciplesorideaswhichmaynotbediscoveredforhundredsof yearstocome.

Inthespecificcontextofhisproblem,Mordelldiscoveredthatalltherationalpoints ofthegeneralcubiccurvecouldbegeneratedfromafinitenumberofthem.Hiswork openedthewayforadditional,importantinvestigationbyothers,butmoregenerally, itindicatedthatthesolutionofsomeseeminglyelementaryproblemsofnumber theorywouldneedtobesolvedbynewmethodsthatcouldhardlybeconsidered “elementary”inthesamesense.ThiswastobethecasewithFLT,eventhough Mordellwasnotthinkingaboutthatneitherin1912norin1945.Still,thetrainof ideasleadingfromMordell’sconjecturetoFaltings’proofisoneoftheremarkable andwellknownadvancesrelatedtoFLTinthetwentiethcentury.Intheend, however,itdidnotleadtoacompletesolutionofFLT.Itsuggestedthatperhapsa proofofFLTmightbecloserthanever,butitalsomadeclearthattheideaofan elementary proofwouldhavetoberelinquished,likeMordellhadsuggestedin1945 forhisequation.

Additionalattemptsandresultscontinuedtosupportthispossibility.Forinstance,the jointcontributionsofLenAdleman,RogerHeathBrownandÉtienneFouvryin1985 impliedthatthereexistinfinitelymanyprimesforwhichcaseIofFermat'slast theoremholds[Fouvry1985;Adleman&HeathBrown1985].Theseworksdrew

47 togetherideastakenfromanastoundingamountofdiversemathematicalsources. 30 Therewasalsoanattemptin1988byYoichiMiyaokathatelicitedmuchinterest becausethemethodshedevelopedinarithmeticalalgebraicgeometryseemedto indicatethatawealthofdifficultmathematicalproblemsmightperhapsbesolved followingasimilarapproach.In1987A.N.Parshindevelopedanarithmeticanalogue ofanimportantinequalityontopologicalinvariantsthatMiyaokahimself,workingon problemsofdifferentialgeometry,hadprovedin1974[Parshin1989].Parshin suggestedthatifthisarithmeticanalogueweretrue,thenFLTwouldalsobetrue. Miyaokathenannounced,ayearlater,aproofofthisanaloguetohisowninequality. Quitesoon,however,itturnedoutthatMiyaoka’sproposedproofcontainedseveral flaws[Cipra1988].Interestingly,flawsencounteredintheproof,didnotin themselvesdiminishthekindofenthusiasmsurroundingMiyaoka’sattempt,andina certainsensetheyactuallyincreasedit.Bythistime,alsothelineofattackthatwould finallyleadtoWiles’proofhadalreadybeeninitiated,startingfromatotallydifferent direction.

WhatalltheseimportantdevelopmentshighlightisthatFLTcamegraduallybeseen withintheframeworkofanincreasinglyevidenttrendinnumbertheory.Problems involvingDiophantineequations,someofwhichcanbeformulatedinvery elementarytermsandwhichhadbeenseeninthepastwithinamuchmorereduced perspective,startedtoappearnowasintimatelyconnectedwithdeepandintricate mathematicaltopicspertainingtobroadrangeoffieldsofenquirysuchasalgebraic geometryordifferentialgeometry.Thistrendwaselicitinganewkindofinterestin botholderandmorerecentproblemsinnumbertheory–FLTincluded–andmany mathematicianswereeagertostressit[Lang1990].

Paralleltothis,anothertrendwithfarreachingconsequenceshadalsobeen developinginnumbertheory,wherebyanincreasinglyimportantrolewasaccordedto unproven,overarchingconjectures,asafocusofattentionaroundwhichnewand interestingmathematicsisproduced.Ofcourse,unprovenconjectureshadalways beenpartandparcelofnumbertheoreticalresearch(FLTbeingacaseinpoint).But now,whenconsiderableevidenceexistedfortheplausibilityofsuchconjecturesthey wereoftenbeingtakenashypotheticalstartingpointsforthedevelopmentof 30 See Math.Rev. MR87d:11020.

48 elaboratedtheories.ThistrendwassingledoutbyBarryMazurasaunique,central characteristicoftwentiethcenturymathematics[Mazur1997].Attheconfluenceof thesetwointerestingandinterrelatedtrends,FLTbecameafocusofspecialattention inasensethatdifferedfromthetraditionalone.Indeed,Mazurexplicitlystressedthis situationin1991,threeyearsbeforeWilespresentedinpublicforthefirsttimehis proof.HespokethenaboutTSWasaforemostexampleofa“profoundlyunifying conjecture”that“playsastructuralanddeeplyinfluentialroleinmuchofourthinking andourexpectationsinArithmetic.”ThestatusofFLTcouldthusbeformulatedin thiscontextasfollows[Mazur1991,594]:

Fermat’s Last Theorem has always been the darling of the amateur mathematician and as thingshaveprogressed,itseemsthattheyarerighttobeenamoredofit:Despitethefactthat itresistssolution,ithasinspiredaprodigiousamountoffirstratemathematics.Despitethe fact that its truth hasn’t a single direct application (even without number theory!) it has, nevertheless,aninteresting oblique contributiontomaketonumbertheory;itstruthwould followfromsomeofthemostvitalandcentralconjecturesinthefield.Althoughothersareto be found, Fermat’s Last Theorem presents an unusually interesting “test” for these conjectures.

Thus,aftercloseto350yearsofhistory,FLTappearedasaproblemwithdeepyet purelytangential importance(eventhough,onemightperhapsqualifytheclaims abouttheprodigiousamountoffirstratemathematicsinspiredbyFLT).FLT suddenlyappearedasmoreimportantthatitcouldhaveeverbeenconsideredalong theyearsnotbecauseofintrinsicmathematicalinterestandconsequences,butrather becausewhatitdoestothestatusofonespecific,deepand“structural”,“unifying conjecture”ofmathematics.

ItwouldbebeyondthescopeofthepresentarticletodescribethestoryofWiles’ breakthroughindetail.Still,itisimportanttobrieflyconsideritwithintheframework discussedthusfarinthisarticle.ThetrainofideasmoredirectlyleadingtoWiles’ proofofFLTmaybetracedbackto1955.Atthattime,inasymposiumheldin Tokyo,YutakaTaniyama(19271958)presentedtwoproblemsonthebasisofwhich aconjecturewasformulatedsomewhatlater.Theconjectureestablishesasurprising linkbetweentwo(theretofore)apparentlydistantkindsofmathematicalentities: “ellipticcurves”and“fieldsofmodularforms”.GoroShimura(1930)andWeiltook partinrefiningtheconjectureoverthefollowingyearsandformulatingitinavery precisefashion.Eventuallyitcametobeknownasthe“TaniyamaShimura”,or

49

“TaniyamaShimuraWeil”conjecture(TSW).Onlymanyyearslateritspossible connectionwithFLTbecameapparent.ThefactthatTaniyamacommittedsuicideina tragicandenigmaticmannerhasalsobeenharnessedtoenhancethedramaticqualities ofthestoryofFLT.ManyyearsafteritsavedWolfskehlfromsuicide,onemaybeled tobelievefromsomeaccounts,itdidtheoppositetoadespairedTaniyama.Of course,Taniyamahimselfhadnoclueabouttheconnectionsthatwouldarisebetween theproblemshesuggestedandFLT,neitherin1955noratthetimeofhisdeath.The reasonforhissuicidein1958hasremaineduncleartothisday,butonethingissure: ithadnoconnectionwhatsoeverwithTSandmuchlesssowithFLT.

TheroadthatfinallyledtoWiles’proofviaapossiblelinkbetweenTSWandFLT derivedfromideasfoundintheseparateworksofYvesHellegrouachandGerhard Frey.Inhisdoctoraldissertation,[Hellegouarch1972]aspartofanattempttoshow theinexistenceofpointsofcertainordersinellipticcurves,Hellegouarchassociated anellipticcurvetoahypotheticalintegersolutionofequation(1)withexponent2 pn, withn≥1and pprime.Inthemideighties,Freycameupwithasimilarassociation andconstructedacertaincurvebasedonasupposedintegersolutionof xn+ yn+ zn= 0.Thiscurveappearedtobenonmodular.ThismeantthatthefalsityofFLTseemed toimplythefalsityofTSW.TheideabehindthenonmodularityofFrey’scurvewas preciselyformulatedbyJeanPierreSerreintermsofGaloisrepresentations,inwhat becameknownastheepsilonconjecture,whichwasprovedin1986byKenRibet.At thispoint,afullproofofFLTappearedtobeathand,albeitjustintheory,forthefirst time.Itwasnecessary,though,tocompleteaclearlydefinable,butverydifficulttask: provingTSW.Expertsatthetime,however,essentiallycoincidedinconsideringsuch atasktobeinaccessible.NotsoWiles,though.Immediatelyuponhearingabout Ribet’sproofoftheepsilonconjecturehedecidedthatitwastimetoreturntohisold mathematicallove,FLT,andtoproveitbyprovidingaproofofTSW.Therestofthe storyiswellknownbynow.

ThischapterinthehistoryofFLT,involvingthefinalstagesleadingtoWiles’proof asdelineatedabove,isaninspiringstoryofuncommonmathematicaldetermination thatwascrownedwithsuccess.Theamountofunexpectedmathematicaldifficulty thatappearedattheendofanunusuallylongquestamplyjustifiestheexcitementwith whichthisachievementhasbeensaluted.Fromahistoricalpointofview,however,it

50 oneshouldnotletthisexcitementmakeusforgetotherdevelopmentsrelatedwith FLTthattookplaceindependentlyofthosementionedaboveandthatevolvedalonga completelydifferentpathofevents.Thisalternativepathdidnotleadtoageneral proofofFLTandperhapsforthisreasontheyhavebeennowsomewhatforgotten. Still,someofitsmainmilestonesareopenlydocumentedinaccountswritteninthe late1970sonthestateoftheartonFLT(e.g.,[Ribenboim1977,1980],[Edwards 1977]).Intheseaccounts,noneofthenamesthatcametobefamouslyassociatedwith thetheoremafterWiles’proof,suchasTaniyamaorShimura,appear.Bycontrast, manydoappearinthoseaccountswhowerenotmentioned,orwerebarelyso,in Dickson’slistof1919,andthatinspiteoftheirinvolvementwithFLTafter1920, wereoftenforgotteninaccountswrittenafter1994.Iwouldliketodevotethe remainderofthissectiontodiscusssometwentiethcenturyworksonFLTthatdidnot leadtoWiles.

Quantitativelyspeaking,mosteffortsdevotedtoFLTinthetwentiethcentury representedacontinuedexplorationofideasrelatedwithKummer’smethods,albeit withsomehistoricallyinterestingtwists.Indeed,asalreadyseeninrelationwiththe worksofMirimanoffandWieferich,someprogresswasdonealongtheselinesinthe firstdecadeofthetwentiethcentury,eveniflimitedandslow.Inthefollowing decadesFLTcontinuedtobeaproblemtowhichthemainstreamofnumbertheory paidlittleattention.Thefirstmathematicianwhoseworkmustbementionedherewas theDanishKajLøchteJensen(nottobemistakenforJohanLudvigJensen(1859 1925)).VerylittleisknownaboutJensen.ApparentlyhewasastudentofNiels Nielsen(18651931),aversatilemathematicianwhobecameinterestedinBernoulli numbersaround1913[Nielsen191314].ItseemsthatJensencouldnotcompletea dissertationduetosomekindofmentalbreakdown,butstillasastudentin1915he publishedinaremoteDanishjournalaproofoftheexistenceofinfinitelymany irregularprimesoftheform4k+3[Jensen1915].31

31 IthankJesperLützenandChristianU.JenseninCopenhagenforinformationon

Jensen (for which unfortunately I do not have direct evidence). This information originatedwithThøgerBangwhopresumablyhearditfromHaraldBohr.

51

KummerhadinitiallyassumedthatinprovingFLTforregularprimes,hewasproving itforaninfinitenumberofcases.Nowadays,thereareheuristicargumentstosupport suchanassumption,butnodefiniteproofofit[Washington1997,63].Inspiteofthe factthatthisquestionarisesnaturallywhenfollowingthelineofattackderivedfrom Kummer,itwasnotuntil1915thatsomeonedevotedsomesystematicthoughttoit. Thiswasanunknownstudentwhoseteacherhappenedatthetimetobelookingat Bernoullinumbers,andwhathedidwastoprovearesultaboutirregularprimes, ratherthanabouttheregularones.Hisproofwasratherstraightforwardanddidnot requireanyspecialideaortechniquethatwasnotknowntonumbertheoristssincethe timeofKummer.Jensenassertedthattheresulthehadprovedwasthencommonly assumed.Thismayhaveindeedbeenthecase,andthisisinanycasewhatJensen heardthisfromhisteachers.Ihavefoundnowrittenevidenceofdiscussions pertainingtothequestionatthetime.Atanyrate,Jensendidconnectit,butonlyin passing,withFLT.Hewrote:

Thatthereexistinfinitelymanyirregularprimeshasbeenconjecturedforalongtimebutas farasIknowithasnotbeenproved.Itiswellknownthatithasacertainimportanceforthe evaluationofKummer'sinvestigationsofFermat'slasttheorem.

Jensen’sresultwasnotmentionedinDickson’s1919account,butonlyinafollowup publishedseveralyearslater[Vandiver&Wahlin1928,182].HarrySchultzVandiver (18821973)publishedJensen’sargumentinEnglishforthefirsttimeonlyin1955 [Vandiver1955],andhestressedthatbythattimeitwasnotyetwellknown.One yearearlier,LeonardCarlitz(19321977)provedasimilar,butmoregeneralresult withoutthelimitation4k+3[Carlitz1954].

ThesameVandiveristhesecondmathematicianIwanttomentionhere,andheisalso somekindofoutsider,thoughinaverydifferentsensethatJensenwas.Vandiverdid nevergotheusualtrainingofnumbertheorists,andwhenhedidgainamore institutionalizedstatusasamathematician,hecontinuedtofollowaselffashioned, originalpath.Henevercompletedhighschool,andthelittlecollegelevel mathematicshestudied,hestudiedinratherhaphazard,nonsystematicway.In1900 hestartedpublishingoriginalresearchworkinvariousjournals,someofitin collaborationwithGeorgeDavidBirkhoff(18841944),themostinfluential mathematicianofthetimeintheUSA.Lateron,in1919,withBirkhoff’s endorsement,VandivergotapositionatCornell.Thatyearhecollaboratedwith

52

Dicksoninthepreparationofthelatter’sbookonthehistoryofthetheoryofnumbers, especiallythechapteronFLT.In1927hepublishedafollowupofthatchapter.After Cornell,VandivermovedtotheUniversityofTexas,Austin,whereheobtaineda permanentappointment. 32

Vandiveristheonlypersoninthisstory,otherthanWiles,tohavetrulydevoteda considerablepartofhisprofessionallifetoworkonFLT.Mostpossiblyhewasnever “tormented”bythetheoremandprobablynoteven“obsessed”withFLT,buthe certainlydidagreatamountofworkspecificallydevotedtoprovingit.Thischoice wasdefinitelyunusualintheAmerican,aswellasintheinternationalmathematical community.In1914heextendedtheWieferichMirimanofftypeofcriterionforcase Itobasis5[Vandiver1914],(i.e.,heprovedthatiftheequation xp+ yp+ zp=0is solvedinintegersrelativelyprimetoanoddprimepthen5 p1–1isdivisibleby p2).

Beginningin1920,VandiverpublishedalongseriesofarticlesonFLT.Amongother things,VandiverwasthefirsttomakesignificantprogresssinceKummerconcerning caseII.HealsocorrectedsomeofKummer’sproofs[Vandiver1920].Ofspecial importancewasapaperpublishedin1929wherehesummarizedsomeofhisearly workandprovedthevalidityofFLT,forbothcaseIandcaseII,forexponentsupto 269[Vandiver1929].ForthisarticlehewasawardedbytheAMSthefirstColePrize foranoutstandingworkinnumbertheory.

AtthecenterofVandiver’sworkwasasustainedattempttorefineKummer’scriteria forprovingFLTforirregularprimes.Headdedtheoreticalinsightintotheproperties oftheBernoullinumbersanddevelopedalgorithmsforfacilitatingtheircalculation [Vandiver192627].Moreinterestingly,hewasthefirsttoconductthiskindof researchinnumbertheorywhilesystematicallyapplyingtwostrategiesnotcommonly foundtheretoforeinthediscipline.Thefirstonewas,simply,divisionoflabor.Inhis 1929article,forinstance,hewasassistedbyyoungmembersofthefacultyinAustin, suchasSamuelWilks(19061964)andElizabethStafford(19022002).Each collaboratorwasassignedacertainpartoftherangeofnumberstobeinvestigated. 32 Very little historical research has been devoted to Vandiver, to his work as mentioned here, and to his interesting collaboration with younger colleagues. An initialattemptappearsin[Corry(forthcoming)].

53

Thesecondstrategywasthemassiveuseofnumbercrunchingdevicesforsupport.In thiscase,heusedelectromechanicalMonroeandMarchantcalculatorsthen available,butinsubsequentresearchhealsotriedadditionalpossibilities.

ItisremarkablethatresultssimilartothoseofVandiverwereachievedatroughlythe sametimebyanotherperson,andagainthiswasacompletemathematicaloutsiderat thetime:OttoGrün(18881974).Whenhewasoverforty,andwithoutanyformal backgroundinmathematics,GrüninitiatedacorrespondencewithHelmutHasse (18981979),thenatMarburg.HassewasnotdirectlyinvolvedinresearchonFLT andindeedatthattimehewasdeeplyimmersedinhisownattemptstoprovethe Riemannconjectureforcurves.ButhewasdefinitelyimpressedbyGrün’sideas,even thoughhewasnotfullyawarethatGrünthenmadehislifeincommercialoccupations ratherthaninmathematics.AshedidinmanysimilaroccasionsHassedevoted considerableenergiestoreacttoGrün’slettersandtocorrectmanymistakeshefound intheworkofamanwhocouldnotpreviouslyenjoyofanyseriousfeedbackforhis ideas.HassehighlyencouragedGrüntocontinuewithhisoriginalefforts.Ashehad beenpreviouslyincontactwithVandiver,Hassealsofacilitatedthecommunication betweenthelatterandGrün,andVandiverexplainedinlettersthespecificpointsin whichtheirresultscoincidedordiffered.Verysoon,however,asGrün’smathematical activitiesandknowledgebecamemoreandmorearticulatedandwellgrounded,he abandonedhisinterestonFLTandhisfocusmovedtoclassfieldtheoryand,above all,togrouptheory.Hewentontomakehighlyinterestingcontributionstothislatter fieldbut,unfortunately,hismathematicalcareerneverreachedinstitutionalstabilityin spiteofeffortsbymanytohelphim. 33

GoingbacktoVandiver,themostimportantofhiscollaborationswastheoneheld withtheyoungcouplefromBerkeley,Emma(19062007)andDerrick(19051991) Lehmer.In1937theywereabletoproveFLTforprimeexponentssmallerthan619, including36casesofirregularprimes[Vandiver1937].Thetechnicallimitations imposedbythemachineusedatthatopportunitydidnotallowthemgoingbeyond thatlimit.Butthetrulydecisivestepforwardwastakenin1954whenVandiver

33 ThecorrespondencebetweenHasseandGrünwasuncoveredandpublishedonly recentlyin[Roquette2005].

54 continuedhiscollaborationwiththeLehmers,usingforthefirsttimeageneral purpose,programmableelectroniccomputer,SWAC,foraproblemofthiskind. TheLehmershadbeenpreviouslyinvolvedindeveloping“standard”proofsofFLT, aswellasintheapplicationofanalogcomputerstothecalculationsrelatedwithprime numbers.Specifically,theymadesignificantcalculationsrelatedwiththeclassical problemoffindingMersenneprimes.In1941,forinstance,thecouplepublisheda jointpaperwhichpresentedasynthesisofvariousmethodsappliedthentoFLT,and thatallowedthemprovingcaseIofFLTforallexponentssmallerthan253,747,899 [Lehmer&Lehmer1941].Intheirjointpaperof1954usingtheelectroniccomputer, theyshowedthatalmosthalfoftheprimessmallerthan2500areirregular,andthey provedthetheoremuptothisvalue[Lehmer,Lehmer&Vandiver1954].

Thisisnottheplacetodescribethedetailsofthisinterestingcollaboration[seeCorry 2008a,2008b].Whatwassaidisenoughtoindicatethatitproceededalongapaththat was,andinmanysenseremained,outsidethemainstream.Still,thekindofwork initiatedbyVandiverandhiscollaboratorsopenedanewdirectionofresearch,which isstillaliveandwelluntilthisveryday.Calculationtechniqueswithdigital computerswerestronglydevelopedafter1951,buttheiruseinmathematicsingeneral andinparticularforfindingproofsforvariousquestionsrelatedwithnumbertheory evolvedinaveryslowandhesitantmanner.Ithasbecomeincreasinglycommonover thelastdecades,butitisyetfarfromhavingbecomemainstream.Withinthistrend, additionalproofsofFLTalongsimilarlinescontinuedtoappearuptoexponentsover onebillion,andcaseIofFLTuptovaluesmuchhigherthanthat[e.g.,Wagstaff 1978;Granville&Monagan1978;Buhler,Crandall&Sompolski1992].Infact, articlesofthiskindcontinuedtobepublishedevenafterWilescompletelygeneral proof[Buhleretal.2000].Oneshouldnotbesurprisedtoseeadditionalarticlesof thiskindappearinthenearfuture,and,perhaps,moregeneralattemptsatcomputer assisted“elementary”proofsofFLT.

In1959,themathematicianHeinrichTietze(18801964)summarizedthecurrent statusofFLT,ashesawit,inabookdevotedtopresenting“FamousProblemsof Mathematics”.Mentioningthefactthatalthoughithadbeenmostlyaddressedby “floodofamateurs”,alsosomeprofessionalshadoccasionallyreturnedtoit,mostly onthewakeoftheWolfskehlPrize.Theseprofessionals,hesaid,wereawareofthe difficultyoftheproblem,andof“theprofoundtheorieswhichmustbemastered”

55 beforeonecanappreciatetheworkalreadydoneinthefield,andheconcluded[Tietze 1965,286]:

PerhapssomedayFermat’sproblemwillbecompletelysolved.Itwillbearealachievement and if the solution yields new methods of research and new problems, it will be a new milestone.Ifnot,ourdesireofknowledgewillhavebeengratified,butFermat’sproblemin itselfwouldthenoccupynomorethanamodestplaceinthehistoryofmathematics,andthis principallybecauseitstimulatedKummer’swork.

Facedwithsomefurtherhistoricalevidence,IbelievethatTietzewouldevenagreeto temperhisclaiminrelationwithKummer,butatanyratethisseemstomeasober andbalancedhistoricalappreciationofFLTthathadtheadditionalvirtueof foreseeinghowagroundbreakingwork,likeWile’swouldeventuallyturnouttobe, wouldcompletelychangetheminorhistoricalimportanceofthisproblem.

8. Concluding Remarks: the Fermat-to-Wiles drama revisited

WithintheentirestoryofFLT,theepisodeinvolvingWilesandhiscontributionto finallyprovingthetheoremisnodoubttheonethatcomesclosertoarealdramaof thekindthatsomeaccountshavetriedtocreatearoundthismathematicaltale. Perhapstheword“obsession”canbeusedherewithsomedegreeofjustification, especiallytodescribetheyearsofselfimposedseclusionduringwhichWilesworked outhisproofandtheunexpecteddiscoveryofanontrivialmistakethattookabout eightmonths,andthecollaborationofRichardTaylor,beforeitcouldbecorrected. BecauseofthisdelayWilescouldnotbeawardedtheFieldsmedalatthe1994 InternationalCongressofMathematiciansinZürich,butthenhewasdulyrecognized in1998inBerlinwithaspecialawardbytheFieldsmedalcommittee,obviously expressinganoverallconsensusintheinternationalmathematicalcommunity.Also therecent2006ICMatMadridwasmarkedbythesensationalsolutionofanother, longstanding,famousopenproblem,thePoincaréconjecture(PC),byGrigori Perelman.Alsohereasomewhatdramatictalesurroundedthesolutionandtheaward, thusgivingrisetoitsownshareofmediacoverageandpopularizationeffortsof variouskinds.Itseemstemptingtome,therefore,tomakeabriefcomparison,inthis concludingsection,ofthedifferentwaysinwhichthesetwoproblemsappearinthe historyoftheFieldmedals.Itdefinitelyappearsasnatural,andevenselfevident,that

56 bothPerelmanandWileswereconsideredtobeinthecategoryofFieldsmedal recipientsfortheirwork.Thereislittletobesaidinthisrespect.But,interestingly enough,previous tothem,FLTandPCfeaturedverydifferentlyintermsofthe historyofthisaward.

Atleastthreemathematicianswereawardedthemedalforworkdirectlyconnected withPC:StephenSmale(1966),WilliamThurston(1982),andMichaelFreedman (1986).InthecasesofSmaleandFreedmanthisconnectionwasexplicitlymentioned asthemainreasonforthemedalinthepresentationattherespectiveICMs[Thom 1968,Milnor1987].InthecaseofThurston’spresentationPCwasnotmentionedbut theconnectionwasbyallmeansimplicitlyclear[Wall1984].AlsoRenéThom (1958),JohnMilnor(1962)andSergeNovikov(1970)receivedtheprizeforwork relatedtoclassificationsofmanifoldsandcobordism,withinwhichPCalways attractedprominent(thoughnotexclusive)attention[Hopf1960,Whitney1963, Atiyah1971].

ThecaseforFLTwasverydifferent.GerdFaltingsistheonlyFieldsmedalrecipient (1986)whoseworkcanisdirectlyrelatedtothehistoryofproblem.Theworksof othernumbertheoristamongtherecipients,KlausRoth(1958)andAlanBaker (1970),wentincompletelydifferentdirectionsanyway,certainlyatthetimeoftheir receivingtheprize.34 ThededicationspeechforFaltingswaspronouncedbyBarry Mazurwhoalreadyadvancedheresomeofhisideas,mentionedabove,ontheunique rolethatcertain“structuralconjectures”playintwentiethcenturymathematics.The importanceofFaltings’proofoftheMordellconjecturederived,inhisview,precisely fromthefactthatitwasintimatelyconnectedwithsomeofthose“outstanding conjectures–fundamentaltoarithmeticandtoarithmeticalgebraicgeometry.”And theoutstandingconjecturesmentionedbyMazurwereShafarevich’sconjecturefor curves,theconjectureofBirch&SwinnertonDyer,andthesemisimplicityconjecture ofGrothendieck.Moreover,Mazurstressedthatbasedontheideasdevelopedby Faltingswecould“expectsimilarlywonderfulthingsinthefuture”,andthesewould relatetotopicssuchasmodulispacesofAbelianvarieties,RiemannRochtheorem forarithmeticsurfaces,or padicHodgetheory.NotonlyFLTwasnotmentioned herespecificallyinrelationwithFaltingsproof,but,moresurprisinglyperhaps,TSW 34 Butsee[Baker1982].

57 wasalsoabsentfromthegeneralpanoramaoffundamentalconjecturesdescribedby Mazur,andthisinspiteofhisfollowing,veryclearpertinentstatement:

Nowadaystheanalogybetweennumberfieldsandfieldsofrationalfunctionsonalgebraic curves(overfinitefields)issowellimprinteduponourviewofbothnumbertheoryandthe theoryofalgebraiccurvesthatitishardtoimaginehowwemightdealwitheithertheory,if deprivedoftheanalogy.[Mazur1997,8]

Here,likethroughouttheentirearticle,mypointinreferringtothisevidencerelated totheFieldsmedalisnottoexpressanymathematicaljudgmentabouttheintrinsic, relativeimportanceofthetwoproblemsbutmerelytoaddanotherinteresting perspectivefromwhichtoconsiderthewaysinwhichthisimportancewasperceived before theimpressive,respectiveachievementsofWilesandPerelman.Contraryto whatisthecasewithPC,themedaldedicationsduringtheseyearsneverpresented FLTatthecenterofanacknowledged,greatplanofresearchthatattractedcontinued attentionandeffortsmeritingtheinstitutionalized,topformalrecognitionofthe internationalmathematicalcommunity.

Wiles’fascinationwithFLT,Iwouldliketosaytoconcludeonadifferentnote, reportedlystartedinhischildhoodwhenhereadEricTempleBell’s TheLast Problem .Onlookingattheexampleprovidedbyhiscareer,andinspiteofthetoneof myaccountthusfar,Imustacknowledgeatthispointthatoverdramatizedaccounts ofmathematicaltaleshaveundeniablevirtues.Indeed,overdramatizingandtelling thehistoryofmathematicsasaseriesofessentiallyundocumentedlegendsabout mathematicalheroesisthemainnarrativestrategyfamouslyfollowedbyE.T.Bellin hisbookaboutFLTaswellasinhisbetterknownandindeedlegendaryMenof Mathematics .Thisapproachiswhatcaughttheimaginationofmanyyoungreaders (someofwhichbecamemathematicians),apparentlyincludingthatofyoungAndrew Wiles.Itdoesnotseemsriskytoconjecturethat,hadayoung,mathematically sensiblechildlikeWiles,readamoderateaccountofthekindIhavepursuedhere— forallthehistoriographicalandscholarlyqualitiesIhopeithas—hewasmuchless likelytobecomefascinatedwiththeproblemandtobeledtoimaginehimselfas pursuingamathematicalcareerwiththehopeofsolvingit.

Onbecomingaprofessionalmathematician,Wilesrealizedthatexistingmethodsto addressFLTseemedtobethoroughlyexhausted.Focusingonanattempttoprovethe

58 theoremdidnotappeartobeareasonablewaytobuildupamathematicalcareer. Withouttherebyloosinghis“emotionalattachment”totheproblem,Wiles neverthelessbuiltadistinguishedcareerwhileworkingonotherfields,especially ellipticcurves.Uponhearingin1986aboutRibet’sproofoftheepsilonconjecture, hisoldinterestonFLTwasrekindled.Wileshadnotpreviouslybelievedthatthe epsilonconjecturewouldbecorrect.Butnow,uponhearingofRibet’sproof,several significantfactorsconvergedintoasituationwhereprovingFLThadbecomea mathematicaltasktowhichhecoulddevoteallofhisenergies:FLT,theproblemfor whichhewaspassionateforsomanyyears,wastobederivedfromamathematical conjecturethatevidentlyposedadifficultprofessionalchallenge,thatwasconsidered tobehighlyimportantandthat,atthesametime,henowbelievedtobetrue.His strongbackgroundonellipticcurvesonlymadetheachievementofthetaskappearas evenmoreplausible.Butwithoutthedirect,emotionallyladenmotivationtoprove FLT,TSWalone,forallofitsacknowledgedmathematicalimportance,would probablynothaveprovidedWileswithenoughfueltoundertakethislongand difficultquest.Thisisthecrossroadsatwhichhereachedthedecisiontodevotehis timenowexclusivelytoprovingTSW,sothatFLTcouldbefinallyestablished.Bell’s kindofdramaticapproachtothehistoryofmathematicsisindeedproblematicforthe professionalhistorian,butonemustacknowledgethatitdidplayadirectrolein triggeringtheseriesofeventsthatwouldeventuallyleadtothesolutionofFLT(and, asabonusonpassing,TSWaswell).

59

9. REFERENCES

Adleman,LenandRogerHeathBrown(1985),“TheFirstCaseofFermat'sLast

Theorem”, Invent.Math. 79,409416.

Atiyah,Michael(1971),“TheWorkofSergeNovikov”, ActesduCongrès

InternationaldesMathématiciens,1970 ,Paris,Dunod,1113.

Bachmann,Paul(18921923), Zahlentheorie.VersucheinerGesamtdarstellungdieser

WissenschaftinihrenHauptteilen ,5Vols.,Leipzig,Teubner.

(19021910), iedereZahlentheorie, 2Vols.,Berlin,Teubner.

(1919), DasFermatProbleminseinerbisherigenEntwicklung ,Berlinand

Leipzig,WalterdeGruyter.

Baker,Alan(1983),“TheFermatequationandtranscendencetheory”,inNealKoblitz

(ed.) umbertheoryrelatedtoFermat’slasttheorem (ProgressinMathematics26),,

Boston,Birkhäuser,pp.89–96.

Barbette,Edouard(1910),LedernierthéorèmedeFermat ,Paris,GauthierVillars.

Barner,Klaus(1997),“PaulWolfskehlandtheWolfskehlPrize”, oticesAMS 44

(10),12941303.

Bernstein,Felix(1903),“ÜberdenKlassenkörpereinesalgebraischenZahlkörpers”,

Göttingenachrichten 1903,4658&304311.

(1904)“ÜberunverzweigteAbelscheKörper(Klassenkörper)ineinem imaginärenGrundbereich”, Jahresb.DMV 13,116119.

(1910),“UeberdenletztenFermat’schenSatz”, Göttingenachrichten 1910,

482488.

60

(1910a),“UeberdenzweitenFalldesletztenFermat’schenSatz”, Göttingen

achrichten 1910,507516.

Bombieri,Enrico(1990),“TheMordellConjectureRevisited”, AnnaliScuola

ormaleSup.Pisa Cl.Sci. ,S.IV,17,615640.

Boncompagni,Baldassare(1880),“CinqlettresdeSophieGermainàCharlesFrederic

Gauss”, Archiv.derMath.Phys , Lit.Bericht ,257,2731&261,310.

Bucciarelli,LouisandNancyDworsky(1980),SophieGermain:AnEssayinthe

HistoryoftheTheoryofElasticity (StudiesintheHistoryofModernScience),New

York,Springer.

Buhler,J.,R.Crandall,andR.W.Sompolski(1992),“IrregularPrimestoOne

Million”,Math.Comp.59,717722.

Buhler,J.,Crandall,R.,Ernvall,R.,Mets,T.,andShokrollahi,M.(2000),“Irregular

PrimesandCyclotomicInvariantsto12Million”, J.SymbolicComput. 11,18.

Calzolari,L.(1855),TentativoperdimostrareilteoremadiFermat ,Ferrara.

Carlitz,Leonard(1954),“ANoteonIrregularPrimes”, Proc.AMS 5,329331.

Catalan,EugèneCharles(1844), Jour.r.ang.Math. 27,192.

Cellérier,C.(189497),“Démonstrationd'unthéorèmefondamentalrelatifaux facteursprimitifsdesnombrespremiers”, Mém.Soc.Phys.Genève 32(7),1642.

Cipra,BarryA.(1988),“FermatTheoremProved”, Science 239,1373.

Collison,MarieJoan(1977),“TheOriginsoftheCubicandBiquadraticReciprocity

Laws”,ArchiveforHistoryofExactSciences 16,6369.

Corry,Leo(2004), ModernAlgebraandtheRiseofMathematicalStructures ,Basel andBoston,Birkhäuser(Second,revisededition).

61

(2004a), David HilbertandtheAxiomatizationofPhysics(18981918):From

"GrundlagenderGeometrie"to"GrundlagenderPhysik" ,Dordrecht,Kluwer .

(2008),“CalculatingtheLimitsofPoeticLicense:FictionalNarrativeandthe

HistoryofMathematics”, Configurations (Forthcoming).

(2008a),“FLTmeetsSWAC:Vandiver,theLehmers,ComputersandNumber

Theory”, IEEEAnnalsofHistoryofComputing (Forthcoming).

(2008b),“NumberCrunchingvs.NumberTheory:ComputersandFLT,from

KummertoSWAC(18501960),andbeyond”, ArchiveforHistoryofExactScience

(Forthcoming).

Dauben,Joseph(1985),ReviewofBucciarelli&Dworsky(1980), American

MathematicalMonthly 92,6470.

Davenport,Harold(1964),“L.J.Mordell”, ActaArithmetica9,312.

DelCentina,Andrea(2005),“LettersofSophieGermainpreservedinFlorence”, Hist.

Math. 32,60–75.

(2008),“UnpublishedManuscriptsofSophieGermainandaReevaluationof herWorkonFermat’sLastTheorem”, Arch.HistoryExactSci.(Forthcoming).

Delone,BorisN.(2005),TheSt.PetersburgSchoolofumberTheory (Translated fromtheRussianoriginal[1947]byRobertBurns),Providence,AMS/LMS.

Dickson,LeonardE.(1917),“Fermat’sLastTheoremandtheOriginandNatureof theAlgebraicTheoryofNumbers”, Ann.ofMath. 18,168187.

(1919), HistoryoftheTheoryofumbers ,3Vols.,NewYork,Chelsea.

Edwards,HaroldM.(1977), Fermat’sLastTheorem.AGeneticIntroductionto

AlgebraicumberTheory ,NewYork,Springer.

62

(1977a),“Postscriptto:‘ThebackgroundofKummer'sproofofFermat'slast theoremforregularprimes'”, Arch.HistoryExactSci. ,17,381394.

Elkies,Noam(1988),“On A4+ B4+ C4= D4”, Math.Comput. 51,828838.

Euler,Leonhard(1760),“Supplementumquorundamtheorematumarithmeticorum, quaeinnonnullisdemonstrationibussupponuntur”, oviComm.Acad.Sci.Petrop. 8

(1763),105128(Reprintedin OperaOmnia ,Ser.1,Vol.2,556–575).

(1770), VollständigeAnleitungzurAlgebra (Reprintedin OperaOmnia ,Ser.

1,Vol.1).

Fermat,Pierrede(Oeuvres),OeuvresdeFermat ,ed.CharlesHenryandPaul

Tannery.5vols.,Paris,GauthierVillarsetfils(18911922),.

Fenster,DellaD.(1999),“WhyDicksonLeftQuadraticReciprocityoutofhis

HistoryoftheTheoryofNumbers”, Amer.Math.Mo. 106(7),618629.

Fladt,Kuno(1960), WalterLietzmann.AusMienenLebenserinnungen ,Göttingen,

Vandenhoeck&Ruprecht.

Fouvry,Étienne(1985),“TheoremdeBrunTitchmarshapplicationauthéorèmede

Fermat” Invent.Math .79,383407.

Frobenius,FerdinandGeorg(1896),“ÜberBeziehungenzwischendenPrimidealen einesalgebraischenKörpersunddenSubstitutionenseinerGruppe”, BerlinBer.

(1896),689703.

(1909),“ÜberdenFermat’schenSatz”, BerlinBer.(1909),12221224

(Reprint: Jour.r.ang.Math.137(1910),314316).

(1910),“ÜberdenFermat’schenSatz.II”, BerlinBer.(1910),200208.

(1914),“ÜberdenFermat’schenSatz.III”, BerlinBer.(1914),653681.

63

Fueter,Rudolf(1922),“KummersKriteriumzumletztenTheoremvonFermat”,

Math.Ann. 85,1120.

Furtwängler,Philip(1910),“UntersuchugenüberdieKreisteilungskörperundden letztenFermat’schenSatz”, Göttingenachrichten 1910,554562.

(1912),“LetzterFermatscherSatzundEisensteinschesReziprozitätsprinzip”,

Wien.Ber. 121,589592.

Fuss,P.H.(ed.)(1843), Correspondancemathématiqueetphysiquedequelques célèbresgéomètresduXVIIIèmesiècle ,St.Pétersbourg.

Gauss,CarlF.(Werke), Werke 12Vols.(18631933),Göttingen.

Gérardin,A.(1910), HistoriquedudernierthéorèmedeFermat ,Tolouse.

Goldstein,Catherine(1994),“Lathéoriedesnombresdansles notesauxComptes

Rendusdel’AcademiedesSciences (18701914):unpremierexamen”, Riv.Stor.Sci.

2,137160.

(1995),UnthéorèmedeFermatetseslecteurs ,St.Denis,PressesUniversitaires deVincennes.

Goldstein,CatherineandNorbertSchappacher(2007),“ABookonSearchofa

Discipline(18011860)”,inGoldsteinetal(eds.)(2007),365.

(2007a),“SeveralDisciplinesandaBook(18601901)”,inGoldsteinetal(eds.)

(2007),67103.

Goldstein,Catherine,NorbertSchappacherandJoachimSchwermer,(eds.)(2007),

TheShapingofArithmeticafterC.F.Gauss'sDisquisitionesArithmeticae ,NewYork,

Springer.(Forthcoming)

64

Granville,A.andMonagan,M.B.(1988),“TheFirstCaseofFermat'sLastTheorem isTrueforAllPrimeExponentsupto 714,591,416,091,389”,Trans.AMS 306,329

359.

Hecke,Erich(1910),“UebernichtregulärePrimzahlenunddenFermat’schenSatz”,

Göttingenachrichten 1910,420424.

(1923), VorlesungenuberdieTheoriederalgebraischenZahlen ,Leipzig,

AkademieVerlagsgesselchaft.

Hellegouarch,Yves(1972), CourbesElliptiquesetÉquationdeFermat ,Thèse,

UniversitéBesançon.

(2001),InvitationtotheMathematicsofFermatWiles ,London,Academic

Press.

Hensel,Kurt(1910),“GedächtnisredeaufErnstEduardKummer”, Festschr.Zur

Feierdes100.GeburststagesEduardKummers ,LeipzigundBerlin,Teubner,pp.1

37.

Hilbert,David(1897),“DieTheoriederalgebraischenZahlkörper( Zahlbericht )”,

Jahresb.DMV 4,175546.(Reprint: Ges.Abh. Vol.1,63363.)

(1902),“MathematicalProblems”, Bull.AMS 8,437479.(Englishtransl.by

M.NewsonofHilbert1901.)

(1913), ThéoriedescorpsdenombresAlgébriques (Frenchtranslationof

Hilbert1897,byA.Lévy),NotesdeG.HumbertetTh.Got,préfacedeG.Humbert,

Paris,Hermann.

(1998), TheTheoryofAlgebraicumberFields ,Berlin,Springer.(English translationofHilbert1879byF.LemmermeyerandN.Schappacher.)

65

Jacobi,CarlG.J.(1846),“ÜberdieKreistheilungundihreAnwendungaufdie

Zahlentheorie”, Jour.r.ang.Math. 30,166182.

Hindry,Marc(1999),“Arithmétiquedescourbesalgébriques,lathèsed'AndréWeil“,

Gazettedesmathématiciens 80,5056.

Hopf,Heinz(1960),“TheWorkofR.Thom”, Proc.ICMEdinburgh,1958 ,

Cambridge,CambridgeUniversityPress,lxlxiv.

Jensen,KajLøchte(1915),“OmtalteoretiskeEgenskaberveddeBernoulliskeTal”,

ytTidsskriftforMatematik 26,7383.

Katz,Shaul(2004),“BerlinRootsZionistIncarnation:TheEthosofPure

MathematicsandtheBeginningsoftheEinsteinInstituteofMathematicsatthe

HebrewUniversityofJerusalem”, ScienceinContext 17(12),199234.

Klein,Felix(189697), AusgewählteKapitelderZahlentheorie ,Göttingen

(Digitalizedversionavailableathttp://historical.library.cornell.edu/cgi bin/cul.math/docviewer?did=05180001&seq=11&frames=0&view=50).

(1926), VorlesungenüberdieEntwicklungderMathematikim19.Jahrhundert ,

Berlin,Springer.

(1939) ElementaryMathematicsfromanAdvancedStandpoint (Translatedfrom thethirdGermanedition(1924)byE.R.HedrickandC.A.Noble),NewYork,

Macmillan.

Kummer,EduardE.(1857),“EinigeSatzeüberdieausdenWurzelnderGleichung

...”, Math.Abh.Akad.Wiss.Berlin 1857,4174.

Landau,Edmund(1912),“GelösteundungelösteProblemeausderTheorieder

PrimzahlverteilungundderRiemannschenZetafunktion”, Jahresb.DMV 21,208228.

66

Landry,Fortuné(1880),“Décompositionde2 64 +1”, ouvellecorrespondance mathématique 4,417.

Lang,Serge(1990),“OldandNewConjecturedDiophantineInequalities”, Bull.AMS

23,3775.

Laporte,E.(1874), PetitessaisurquelquesméthodesprobablesdeFermat,

Bordeaux.

Lehmer,DerrickH.,Lehmer,Emma(1941),“OntheFirstCaseofFermat'sLast

Theorem”, Bull.AMS 47,139142.

Lehmer,DerrickH.,EmmaLehmerandHarryS.Vandiver(1954),“Anapplicationof highspeedcomputingtoFermat'slasttheorem”,Proceedingsoftheational

AcademyofSciencesoftheUnitedStatesofAmerica ,40,2533.

Legendre,AdrienM.(1798), Théoriedesnombres ,Paris(2d,ed.–1808;3ded.

1830).

(1823),“Recherchessurquelquesobjetsd'analyseindéterminéeet particulièrementsurlethéorèmedeFermat”, Mém.Acad.Sci.Inst.France 6,160.

Lemmermeyer,Franz(2000), ReciprocityLaws:FromEulertoEisenstein ,New

York,Springer.

Lietzmann,Walther(1904), ÜberdasbiquadratischeReziprozitätsgesetzin algebraischenZahlkörpern ,Göttingen:Vandenhoeck&Ruprecht .

(1905),“ZurTheorieder ntenPotenzresteinalgebraischenZahlenkörpern”,

Math.Ann. 60,263284.

(1912,1965), DerPythagoreischenLehrsatz;miteinemAusblickaufdas

FermatscheProblem, Leipzig,Teubner .(Seventhrevisededition:1965.)

67

Macfarlane,Alexander(1916), TenBritishMathematiciansoftheineteenthCentury,

NewYork,Wiley.

Mahoney,MichaelS.(1994), TheMathematicalCareerofPierredeFermat .1601

1665 (Secondedition),Princeton,PrincetonUniversityPress.

Martone,M.(1887), DimostrazionediuncelebreteoremadiFermat , Catanzaro,

Dastoli.

(1888), otaadunadimostrazionediuncelebreteoremadiFermat , Napoli,

Jovene.

Mazur,Barry(1987),“OnsomeofthemathematicalcontributionsofGerdFaltings”,

Proc.ICM,Berkeley1986 ,Providence,AMS,712.

(1991),“NumberTheoryasGadfly”, Amer.Math.Mo. 98,593610.

(1997),“Conjecture”, Synthese 111,197210.

Milnor,John(1987),“TheworkofMHFreedman”, Proc.ICM,Berkeley1986 ,

Providence,AMS,1315.

Minkowski,Hermann(1905),“PeterGustavLejeuneDirichletundseineBedeutung fürdieheutigeMathematik”, Jahresb.DMV 14,149163.

Mirimanoff,Dimitry(1892),“Surunequestiondelathéoriedesnombres”, Jour.r. ang.Math. 109,8288.

(1893),“Surl’équation x37 + y37 + z37 =0”, Jour.r.ang.Math. 111,2630.

(1904),“L’équationindeterminée xl+ yl+ zl=0etlecritériumdeKummer”,

Jour.r.ang.Math. 128,4568.

Mordell,LouisJ.(1921),ThreeLecturesonFermat'sLastTheorem ,Cambridge,

CambridgeUniversityPress.

68

(1928),“ThePresentStateofSomeProblemsintheTheoryofNumbers”,

ature 121,138140.

(1947),AChapterintheTheoryofumbers ,CambridgeUniversityPress.

Nathanson,MelvynB.(1987),“AShortProofofCauchy'sPolygonalNumber

Theorem”, ProceedingsAMS 99(1),2224.

Nielsen,Niels(191314),“NotesurunethéorieélémentairedesnombresdeBernoulli etd’Euler”,ArkivförMatematik,AstronomiochFysik 9,115.

Parshin,A.N.(1989),“TheBogomolovMiyaokaYauinequalityforarithmetic surfacesanditsapplications”, SéminairedeThéoriedesombres,Paris198687,

ProgressinMathematics 75,Boston,Birkhäuser,299312.

Perron,Oskar(1911),“ÜberWarheitundIrrtuminderMathematik”, Jahresb.DMV

20,196211.

Poincaré,Henri(1901),“Surlespropriétésarithmétiquesdescourbesalgébriques”, J. deLiouville 7,161233.

Reid,Constance(1970),Hilbert ,Berlin/NewYork,Springer.

Ribenboim,Paulo(1977),“RecentresultsonFermat'slasttheorem”. Canad.Math.

Bull. 20(2),229242.

(1980), 13LecturesonFermat’sLastTheorem ,NewYork,Springer.

(1999), Fermat’sLastTheoremforAmateurs ,NewYork,Springer.

Roquette,Peter(2005),“FromFLTtofinitegroups.TheremarkablecareerofOtto

Grün”, JahresberichtDMV 107,117–154.

Rothholtz,Julius(1892), BeiträgezumFermatschenLehrsatz ,Berlin,VolksZeitung.

69

Scharlau,WienfriedandHandOpolka(1985), FromFermattoMinkowski.Lectures ontheTheoryofumbersanditsHistoricalDevelopment ,NewYorkBerlinTokyo,

Spriger.

Singh,Simon(1997), Fermat ’sEnigma, NewYork,WalkerandCompany.

Smith,HenryJ.S.(1876),“OnthePresentStateandProspectsofSomeBranchesof

Mathematics”, Proc.LMS 8,629(inColl.Papers,Vol.2,166190).

(1894),TheCollectedMathematicalPapers ,(ed.ByJ.W.L.Glaisher),2

Vols.,Oxford,ClarendonPress.

Stupuy,Hippolyte(1896),SophieGermain,Œuvresphilosophiques ,Paris,Nouvelle ed.Ritti.

Thom,René(1968),“SurlestravauxdeStephenSmale”, Proc.ICMMoscow,1966 ,

Moscow,Mir,2528.

Thomas,K.(1859),DasPythagöraischeDreieckunddieungeradeZahl, Berlin.

Tietze,Heinrich(1965), FamousProblemsofMathematics (Authorizedtranslationof thesecond(1959),revisedGermanedition),NewYork,GraylockPress.

VanderPoorten,Alf(1995), otesonFermat’sLastTheorem, NewYork,Wiley.

Vandiver,HarryS.(1914),“ExtensionsofthecriteriaofWieferichandMirimanoffin

ConnectionwithFermat'sLastTheorem”,Jour.r.ang.Math. 114,314318.

(1920),“OnKummer'sMemoirof1857ConcerningFermat'sLastTheorem”,

Proc.at.Acad.Sci. 6,266269.

(1926),“SummaryofResultsandProofsonFermat'sLastTheorem(First

Paper)”,Proc.at.Acad.Sci.USA 12,106109.

70

(192627),“TransformationsofKummer'sCriteriainConnectionwith

Fermat'sLastTheorem”,AnnalsofMathematics 27,171176&28,451458.

(1929),“OnFermat'sLastTheorem”,Trans.AMS 31,613642.

(1937),“OnBernoulliNumbersandFermat'sLastTheorem”, DukeMath.J. 3,

569584.

(1952),“LestravauxmathématiquesdeDmitryMirimanoff”, L'Enseignement

Mathematique 39,169179.

(1955),“IsThereanInfinityofRegularPrimes?”,ScriptaMathematic a21,

1955,306309.

Vandiver,HarryS.&G.E.Wahlin(1928), AlgebraicumbersII.Reportofthe

CommitteeonAlgebraicumbers ,Washington,D.C.,NationalResearchCouncil.

Wagstaff,SamuelS.(1978),“Theirregularprimesto125000”,Math.Comp. 32

(142),583591.

Wall,C.T.C.(1984),“OntheworkofW.Thurston”,Proc.ICMWarsaw,1983,

Warsaw,1114.

Washington,Lawrence(1997), AnIntroductiontoCyclotomicFields (2nded.),New

York,SpringerVerlag.

Weil,André(1928),“L’arithmétiquesurlescourbesalgebriques”, ActaMathematica

52,281315.

---- (1984), umberTheory.AnApproachthroughHistory.FromHammurapito

Legendre ,BostonBaselStuttgart,Birkhäuser.

Whitney,Hassler(1963),“TheWorkofJohnMilnor”, Proc.ICMStockholm,1962 ,

Stockholm,InstituteMittagLeffler,15.

71

Wieferich,Arthur(1909),“ZumletztenFermat'schenTheorem”, Jour.r.ang.Math.

136,293302.

72