MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE PAROSH AZIZ ABDULLA, MOHAMED FAOUZI ATIG, STEFANOS KAXIRAS, CARL LEONARDSSON, ALBERTO ROS, AND YUNYUN ZHU Uppsala University, Sweden e-mail address:
[email protected] Uppsala University, Sweden e-mail address: mohamed
[email protected] Uppsala University, Sweden e-mail address:
[email protected] Uppsala University, Sweden e-mail address:
[email protected] Universidad de Murcia, Spain e-mail address:
[email protected] Uppsala University, Sweden e-mail address:
[email protected] Abstract. Cache coherence protocols based on self-invalidation and self-downgrade have recently seen increased popularity due to their simplicity, potential performance efficiency, and low energy consumption. However, such protocols result in memory instruction reordering, thus causing extra program behaviors that are often not intended by the programmers. We propose a novel formal model that captures the semantics of programs running under such protocols, and employs a set of fences that interact with the coherence layer. Using the model, we design an algorithm to analyze the reachability and check whether a program satisfies a given safety property with the current set of fences. We describe a method for insertion of optimal sets of fences that ensure correctness of the program under such protocols. The method relies on a counter-example guided fence insertion procedure. One feature of our method is that it can handle a variety of fences (with different costs). This diversity makes optimization more difficult since one has to optimize the total cost of the inserted fences, rather than just their number.