Introduction
Introduction This dissertation is a reading of chapters 16 (Introduction to Integer Liner Programming) and 19 (Totally Unimodular Matrices: fundamental properties and examples) in the book : Theory of Linear and Integer Programming, Alexander Schrijver, John Wiley & Sons © 1986. The chapter one is a collection of basic definitions (polyhedron, polyhedral cone, polytope etc.) and the statement of the decomposition theorem of polyhedra. Chapter two is “Introduction to Integer Linear Programming”. A finite set of vectors a1 at is a Hilbert basis if each integral vector b in cone { a1 at} is a non- ,… , ,… , negative integral combination of a1 at. We shall prove Hilbert basis theorem: Each ,… , rational polyhedral cone C is generated by an integral Hilbert basis. Further, an analogue of Caratheodory’s theorem is proved: If a system n a1x β1 amx βm has no integral solution then there are 2 or less constraints ƙ ,…, ƙ among above inequalities which already have no integral solution. Chapter three contains some basic result on totally unimodular matrices. The main theorem is due to Hoffman and Kruskal: Let A be an integral matrix then A is totally unimodular if and only if for each integral vector b the polyhedron x x 0 Ax b is integral. ʜ | ƚ ; ƙ ʝ Next, seven equivalent characterization of total unimodularity are proved. These characterizations are due to Hoffman & Kruskal, Ghouila-Houri, Camion and R.E.Gomory. Basic examples of totally unimodular matrices are incidence matrices of bipartite graphs & Directed graphs and Network matrices. We prove Konig-Egervary theorem for bipartite graph. 1 Chapter 1 Preliminaries Definition 1.1: (Polyhedron) A polyhedron P is the set of points that satisfies Μ finite number of linear inequalities i.e., P = {xɛ ő | ≤ b} where (A, b) is an Μ m (n + 1) matrix.
[Show full text]