Planck Collaboration: ERCSC the Cosmic Microwave Background (CMB)

Total Page:16

File Type:pdf, Size:1020Kb

Planck Collaboration: ERCSC the Cosmic Microwave Background (CMB) Astronomy & Astrophysics manuscript no. 16474ms c ESO 2011 August 15, 2011 Planck Early Results. VII. The Early Release Compact Source Catalogue Planck Collaboration: P. A. R. Ade76, N. Aghanim50, M. Arnaud63, M. Ashdown61,4, J. Aumont50, C. Baccigalupi74, A. Balbi30, A. J. Banday82,8,68, R. B. Barreiro57, J. G. Bartlett3,59, E. Battaner84, K. Benabed51, A. Benoˆıt49, J.-P. Bernard82,8, M. Bersanelli27,43, R. Bhatia5, A. Bonaldi39, L. Bonavera74,6, J. R. Bond7, J. Borrill67,78, F. R. Bouchet51, M. Bucher3, C. Burigana42, R. C. Butler42, P. Cabella30, C. M. Cantalupo67, B. Cappellini43, J.-F. Cardoso64,3,51, P. Carvalho4, A. Catalano3,62, L. Cay´on20, A. Challinor54,61,11, A. Chamballu47, R.-R. Chary48⋆, X. Chen48, L.-Y Chiang53, C. Chiang19, P. R. Christensen71,31, D. L. Clements47, S. Colombi51, F. Couchot66, A. Coulais62, B. P. Crill59,72, F. Cuttaia42, L. Danese74, R. J. Davis60, P. de Bernardis26, A. de Rosa42, G. de Zotti39,74, J. Delabrouille3, J.-M. Delouis51, F.-X. D´esert45, C. Dickinson60, J. M. Diego57, K. Dolag68, H. Dole50, S. Donzelli43,55, O. Dor´e59,9, U. D¨orl68, M. Douspis50, X. Dupac34, G. Efstathiou54, T. A. Enßlin68, H. K. Eriksen55, F. Finelli42, O. Forni82,8, P. Fosalba52, M. Frailis41, E. Franceschi42, S. Galeotta41, K. Ganga3,48, M. Giard82,8, Y. Giraud-H´eraud3, J. Gonz´alez-Nuevo74, K. M. G´orski59,86, S. Gratton61,54, A. Gregorio28, A. Gruppuso42, J. Haissinski66, F. K. Hansen55, D. Harrison54,61, G. Helou9, S. Henrot-Versill´e66, C. Hern´andez-Monteagudo68 , D. Herranz57, S. R. Hildebrandt9,65,56, E. Hivon51, M. Hobson4, W. A. Holmes59, A. Hornstrup13, W. Hovest68, R. J. Hoyland56,K.M. Huffenberger85, M. Huynh48,A.H. Jaffe47, W. C. Jones19, M. Juvela18, E. Keih¨anen18, R. Keskitalo59,18, T. S. Kisner67, R. Kneissl33,5, L. Knox22, H. Kurki-Suonio18,37, G. Lagache50, A. L¨ahteenm¨aki1,37, J.-M. Lamarre62, A. Lasenby4,61, R. J. Laureijs35, C. R. Lawrence59, S. Leach74, J. P. Leahy60, R. Leonardi34,35,23, J. Le´on-Tavares1, C. Leroy50,82,8, P. B. Lilje55,10, M. Linden-Vørnle13, M. L´opez-Caniego57, P. M. Lubin23, J. F. Mac´ıas-P´erez65, C. J. MacTavish61, B. Maffei60, G. Maggio41, D. Maino27,43, N. Mandolesi42, R. Mann75, M. Maris41, F. Marleau15, D. J. Marshall82,8, E. Mart´ınez-Gonz´alez57, S. Masi26, M. Massardi39, S. Matarrese25, F. Matthai68, P. Mazzotta30, P. McGehee48, P. R. Meinhold23, A. Melchiorri26, J.-B. Melin12, L. Mendes34, A. Mennella27,41, S. Mitra59, M.-A. Miville-Deschˆenes50,7, A. Moneti51, L. Montier82,8, G. Morgante42, D. Mortlock47, D. Munshi76,54, A. Murphy70, P. Naselsky71,31, P. Natoli29,2,42, C. B. Netterfield15, H. U. Nørgaard-Nielsen13, F. Noviello50, D. Novikov47, I. Novikov71, I. J. O’Dwyer59, S. Osborne80, F. Pajot50, R. Paladini79,9, B. Partridge36, F. Pasian41, G. Patanchon3, T. J. Pearson9,48, O. Perdereau66, L. Perotto65, F. Perrotta74, F. Piacentini26, M. Piat3,R. Piffaretti63,12, S. Plaszczynski66, P. Platania58, E. Pointecouteau82,8, G. Polenta2,40, N. Ponthieu50, T. Poutanen37,18,1, G. W. Pratt63, G. Pr´ezeau9,59, S. Prunet51, J.-L. Puget50, J. P. Rachen68, W. T. Reach83, R. Rebolo56,32, M. Reinecke68, C. Renault65, S. Ricciardi42, T. Riller68, I. Ristorcelli82,8, G. Rocha59,9, C. Rosset3, M. Rowan-Robinson47, J. A. Rubi˜no-Mart´ın56,32, B. Rusholme48, A. Sajina17, M. Sandri42, D. Santos65, G. Savini73, B. M. Schaefer81, D. Scott16, M. D. Seiffert59,9, P. Shellard11, G. F. Smoot21,67,3, J.-L. Starck63,12, F. Stivoli44, V. Stolyarov4, R. Sudiwala76, R. Sunyaev68,77, J.-F. Sygnet51, J. A. Tauber35, D. Tavagnacco41, L. Terenzi42, L. Toffolatti14, M. Tomasi27,43, J.-P. Torre50, M. Tristram66, J. Tuovinen69, M. T¨urler46, G. Umana38, L. Valenziano42, J. Valiviita55, J. Varis69, P. Vielva57, F. Villa42, N. Vittorio30, L. A. Wade59, B. D. Wandelt51,24, S. D. M. White68, A. Wilkinson60, D. Yvon12, A. Zacchei41, and A. Zonca23 (Affiliations can be found after the references) Preprint online version: August 15, 2011 ABSTRACT A brief description of the methodology of construction, contents and usage of the Planck Early Release Compact Source Catalogue (ERCSC), including the Early Cold Cores (ECC) and the Early Sunyaev-Zeldovich (ESZ) cluster catalogue is provided. The catalogue is based on data that consist of mapping the entire sky once and 60% of the sky a second time by Planck, thereby comprising the first high sensitivity radio/submillimetre observations of the entire sky. Four source detection algorithms were run as part of the ERCSC pipeline. A Monte-Carlo algorithm based on the injection and extraction of artificial sources into the Planck maps was implemented to select reliable sources among all extracted candidates such that the cumulative reliability of the catalogue is 90%. There is no requirement on completeness for the ERCSC. As a result of the Monte-Carlo assessment of reliability of sources from the diff≥erent techniques, an implementation of the PowellSnakes source extraction technique was used at the five frequencies between 30 and 143 GHz while the SExtractor technique was used between 217 and 857 GHz. The 10σ photometric flux density limit of the catalogue at b > 30◦ is 0.49, 1.0, 0.67, 0.5, 0.33, 0.28, 0.25, 0.47 and 0.82 Jy at each of the nine frequencies between 30 arXiv:1101.2041v2 [astro-ph.CO] 8 Jul 2011 and 857 GHz. Sources which are| up| to a factor of 2 fainter than this limit, and which are present in “clean” regions of the Galaxy where the sky background due to emission from the interstellar medium∼ is low, are included in the ERCSC if they meet the high reliability criterion. The Planck ERCSC sources have known associations to stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features. A significant fraction of unclassified sources are also present in the catalogs. In addition, two early release catalogs that contain 915 cold molecular cloud core candidates and 189 SZ cluster candidates that have been generated using multifrequency algorithms are presented. The entire source list, with more than 15000 unique sources, is ripe for follow-up characterisation with Herschel, ATCA, VLA, SOFIA, ALMA and other ground-based observing facilities. Key words. Cosmology:observations – Surveys – Catalogues – Radio continuum: general – Submillimetre: general 1. Introduction Planck1 (Tauber et al. 2010; Planck Collaboration 2011a) is the third-generation space mission to measure the anisotropy of ⋆ Corresponding Author: R.-R. Chary, [email protected] 1 Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific con- 1 Planck Collaboration: ERCSC the cosmic microwave background (CMB). It observes the sky from the end of the first sky coverage to a community-wide re- in nine frequency bands covering 30–857GHz with high sen- lease of source lists is the motivating factor behind the reliability sitivity and angular resolution from 33arcmin to 4.2arcmin and flux-density accuracy requirements as well as the choice of (Table 1). The Low Frequency Instrument (LFI; Mandolesi et al. algorithms that were adopted for the ERCSC. 2010; Bersanelli et al. 2010; Mennella et al. 2011) covers the The sources of noise vary significantly as a function of lo- 30, 44, and 70GHz bands with amplifiers cooled to 20K. cation on the sky as well as a function of frequency. Apart from The High Frequency Instrument (HFI; Lamarre et al. 2010; the instrumental noise and the Galaxy, at the lowest frequencies Planck HFI Core Team 2011a) covers the 100, 143, 217, 353, the dominant astrophysical source of noise is the CMB itself. At 545, and 857GHz bands with bolometers cooled to 0.1K. the highest frequencies, zodiacal dust and emission from the in- Polarisation is measured in all but the highest two bands terstellar medium dominate. As a result, the flux density limits (Leahy et al. 2010; Rosset et al. 2010). A combination of radia- corresponding to the same reliability vary widely across the sky tive cooling and three mechanical coolers produces the temper- (Figure 1), with the sensitivity typically improving with increas- atures needed for the detectors and optics (Planck Collaboration ing ecliptic latitude. The areas of deepest coverage are centred 2011b). Two data processing centres (DPCs) check and cali- on the ecliptic pole regions due to the scan strategy and indi- brate the data and make maps of the sky (Planck HFI Core Team vidual sources in that vicinity may be observed several times by 2011b; Zacchei et al. 2011). Planck’s sensitivity, angular resolu- Planck in the course of a single sky survey. tion, and frequency coverage make it a powerful instrument for The data obtained from the scans of the sky between 2009 Galactic and extragalactic astrophysics as well as cosmology. August 13 and 2010 June 6, corresponding to Planck opera- Planck spins around its axis at a rate of one rotation per tional days 91–389, have been processed and converted into all- minute. The focal plane is oriented at an angle of 85◦ to sky maps at the HFI and LFI Data Processing Centres (DPCs). the satellite spin axis, which tracks the direction of the Sun The data extend beyond a single sky coverage with 60% of at 1◦ per day. The effective Planck scan strategy described the second sky coverage included in the maps. A descrip- in≈ Dupac& Tauber (2005) results in areas near the ecliptic tion of the processing can be found in Zaccheiet al. (2011); poles being observed several times more frequently than re- Planck HFI Core Team (2011b). Four different implementations gions of sky near the ecliptic plane.
Recommended publications
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • Guide to the Extended Versions of MPC Data Files Based on the MPCORB Format
    Guide to the Extended Versions of MPC Data Files Based on the MPCORB Format Last updated: 2016/04/19 by J.L. Galache Introduction The Minor Planet Center (MPC) has been providing the orbits of minor planets in the form of a file, MPCORB.DAT, since the mid '90s (1990s, not 1890s). Back then there were only a few thousand known asteroids, compared to the several hundred thousand of today, so a flat text file was the appropriate way to circulate these data. It was also a time when most orbit computations were programmed in Fortran, which ingested data no other way. MPCORB.DAT has therefore always been, and continues to be, a fixed-width file (see Table 1 for the current format description1). In fact, all original data files available on the MPC website are flat text files (even the orbits files provided for planetarium-type/sky simulation software packages are simply text files of varying format2). In the early years of the 2010s, possibly due to the rising popularity of the scripting language Python amongst astronomers, and an increased interest from developers wanting to write asteroid-themed tools, requests were received to provide data in other, easier to parse formats, e.g., JSON, CSV, SQL, etc. At the same time, astronomers and developers alike wanted more information than was currently been provided in MPCORB.DAT; information that did exist on the MPC website in other, often hard to find, files. Here was an opportunity to add some new data to existing files, while also making them available in other formats.
    [Show full text]
  • 16 Minor Planet Bulletin 40 (2013)
    16 bimodal but has some indication of flattening of the maximums. LIGHTCURVES FOR 1394 ALGOA, 3078 HORROCKS, 4874 Burke was observed by Aymani (2012), who obtained a 4724 BROCKEN, AND 6329 HIKONEJYO period of 3.657 ± 0.001 and amplitude A = 0.31 mag. Menzies FROM ETSCORN CAMPUS OBSERVATORY (2012) obtained a period of 3.656 ± 0.001 and an amplitude of 0.23 ± 0.02 mag. Daniel A. Klinglesmith III, Ethan Risley, Janek Turk, Angelica Vargas, Curtis Warren The 115° longitude difference between the Etscorn Campus Etscorn Campus Observatory Observatory and the Bigmuskie Observatory allowed almost an 8 New Mexico Tech hour (~0.3) phase shift for 3948 Bohr. This allowed us to cover the 101 East Road nearly 24-hour sidereal period asteroid completely. This type of Socorro, NM, USA 87801 international collaboration is essential for asteroid with periods [email protected] near 24 hours. The collaboration continued with the observations of 4874 Burke’s 3.657-hour period (Received: 6 September) Between 2012 March and June, four asteroids were observed at the Etscorn Campus Observatory. Synodic periods and amplitudes were determined for all four: 1394 Algoa, P = 2.768 ± 0.001 h, A = 0.21 ± 0.10 mag; 3078 Horrocks, P = 13.620 ± 0.003 h, A = 0.25 ± 0.10 mag; 4724 Brocken, P = 5.912 ± 0.001 h, A = 0.75 ± 0.10 mag; and 6329 Hikonejyo, P = 6.064 ± 0.001 h, A = 0.23 ± 0.10 mag. Continuing with the lightcurve program at Etscorn Campus Observatory, we obtained data for four asteroids using our two Celestron 35.6-cm f/11 Schmidt-Cassegrain telescopes and SBIG STL-1001E CCD cameras with 1024x1024x24-micron pixels.
    [Show full text]
  • (2000) Forging Asteroid-Meteorite Relationships Through Reflectance
    Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta.
    [Show full text]
  • I(NASA-CR-154510') ASTEROID SURFACE
    REFLECTANCE S PECV A By Michael J. Gaffey Thomas B. McCord (NASA-CR-154510') ASTEROID SURFACE N8-'10992 iMATERIALS: MINERALOGICAL.CHARACTERIZATIONS FROM REFLECTANCE SPECTRA (Hawaii Univ.), 147 p HC -A07/MF A01 CSCL 03B Unclas G , ­ to University of Hawaii at Manoa Institute for Astronomy 2680 Woodlawn Drive * Honolulu, Hawaii 96822 Telex: 723-8459 * UHAST HR November 18, 1977 NASA Scientific and Technical Information Facility P.O. Box 8757 Baltimore/Washington Int. Airport Maryland 21240 Gentlemen: RE: Spectroscopy of Asteroids, NSG 7310 Enclosed are two copies of an article entitled "Asteroid Surface Materials: Mineralogical Characterist±cs from Reflectance Spectra," by Dr. Michael J. Gaffey and Dr. Thomas B. McCord, which we have recently submitted for publication to Space Science Reviews. We submit these copies in accordance with the requirements of our NASA grants. Sincerely yours, Thomas B. McCord Principal Investigator TBM:zc Enclosures AN EQUAL OPPORTUNITY EMPLOYER ASTEROID SURFACE MATERIALS: MINERALOGICAL CHARACTERIZATIONS FROM REFLECTANCE SPECTRA By Michael J. Gaffey Thomas B. McCord Institute for Astronomy University of Hawaii at Manoa 2680 Woodlawn Drive Honolulu, Hawaii 96822 Submitted to Space Science Reviews Publication #151 of the Remote Sensing Laboratory Abstract The interpretation of diagnostic parameters in the spectral reflectance data for asteroids provides a means of characterizing the mineralogy and petrology of asteroid surface materials. An interpretive technique based on a quantitative understanding of the functional relationship between the optical properties of a mineral assemblage and its mineralogy, petrology and chemistry can provide a considerably more sophisticated characterization of a surface material than any matching or classification technique. for those objects bright enough to allow spectral reflectance measurements.
    [Show full text]
  • Cumulative Index to Volumes 1-45
    The Minor Planet Bulletin Cumulative Index 1 Table of Contents Tedesco, E. F. “Determination of the Index to Volume 1 (1974) Absolute Magnitude and Phase Index to Volume 1 (1974) ..................... 1 Coefficient of Minor Planet 887 Alinda” Index to Volume 2 (1975) ..................... 1 Chapman, C. R. “The Impossibility of 25-27. Index to Volume 3 (1976) ..................... 1 Observing Asteroid Surfaces” 17. Index to Volume 4 (1977) ..................... 2 Tedesco, E. F. “On the Brightnesses of Index to Volume 5 (1978) ..................... 2 Dunham, D. W. (Letter regarding 1 Ceres Asteroids” 3-9. Index to Volume 6 (1979) ..................... 3 occultation) 35. Index to Volume 7 (1980) ..................... 3 Wallentine, D. and Porter, A. Index to Volume 8 (1981) ..................... 3 Hodgson, R. G. “Useful Work on Minor “Opportunities for Visual Photometry of Index to Volume 9 (1982) ..................... 4 Planets” 1-4. Selected Minor Planets, April - June Index to Volume 10 (1983) ................... 4 1975” 31-33. Index to Volume 11 (1984) ................... 4 Hodgson, R. G. “Implications of Recent Index to Volume 12 (1985) ................... 4 Diameter and Mass Determinations of Welch, D., Binzel, R., and Patterson, J. Comprehensive Index to Volumes 1-12 5 Ceres” 24-28. “The Rotation Period of 18 Melpomene” Index to Volume 13 (1986) ................... 5 20-21. Hodgson, R. G. “Minor Planet Work for Index to Volume 14 (1987) ................... 5 Smaller Observatories” 30-35. Index to Volume 15 (1988) ................... 6 Index to Volume 3 (1976) Index to Volume 16 (1989) ................... 6 Hodgson, R. G. “Observations of 887 Index to Volume 17 (1990) ................... 6 Alinda” 36-37. Chapman, C. R. “Close Approach Index to Volume 18 (1991) ..................
    [Show full text]
  • Observer's Handbook 1981
    OBSERVER’S HANDBOOK 1 9 8 1 EDITOR: JOHN R. PERCY ROYAL ASTRONOMICAL SOCIETY OF CANADA CONTRIBUTORS AND ADVISORS A l a n H. B a t t e n , Dominion Astrophysical Observatory, Victoria, B.C., Canada V8X 3X3 (The Nearest Stars). Terence Dickinson, Editor, Star and Sky, 44 Church Lane, Westport, Conn. 06880 (The Planets). Alan Dyer, Queen Elizabeth Planetarium, 10004-104 Ave., Edmonton, Alta. T5J 0K 1 (Messier Catalogue, Deep-Sky Objects). M arie Fidler, Royal Astronomical Society of Canada, 124 Merton St., Toronto, Ont., Canada M4S 2Z2 (Observatories and Planetariums). V ictor Gaizauskas, Herzberg Institute of Astrophysics, National Research Council, Ottawa, Ont., Canada K1A 0R6 (Sunspots). J o h n A. G a l t , Dominion Radio Astrophysical Observatory, Penticton, B.C., Canada V2A 6K3 (Radio Sources). Ian H alliday, Herzberg Institute of Astrophysics, National Research Council, Ottawa, Ont., Canada K1A 0R6 (Miscellaneous Astronomical Data). H e l e n S. H o g g , David Dunlap Observatory, University of Toronto, Richmond Hill, Ont., Canada L4C 4Y6 (Foreword). D o n a l d A. M a c R a e , David Dunlap Observatory, University of Toronto, Richmond Hill, Ont., Canada L4C 4Y6 (The Brightest Stars). B r i a n G. M a r s d e n , Smithsonian Astrophysical Observatory, Cambridge, Mass., U.S.A. 02138 (Comets, Minor Planets). J a n e t A. M a t t e i , American Association of Variable Star Observers, 187 Concord Ave., Cambridge, Mass. U.S.A. 02138 (Variable Stars). P e t e r M. M i l l m a n , Herzberg Institute of Astrophysics, National Research Council, Ottawa, Ont., Canada K1A 0R6 (Meteors, Fireballs and Meteorites).
    [Show full text]
  • Adaptive Optics and Lightcurve Data of Asteroids: Twenty Shape Models and Information Content Analysis
    Astronomy & Astrophysics manuscript no. viikinkoski_2017 c ESO 2018 October 14, 2018 Adaptive optics and lightcurve data of asteroids: twenty shape models and information content analysis M. Viikinkoski1, J. Hanuš2, M. Kaasalainen1, F. Marchis3, and J. Durechˇ 2 1 Department of Mathematics, Tampere University of Technology, PO Box 553, 33101 Tampere, Finland 2 Astronomical Institute, Faculty of Mathematics and Physics, Charles University, V Holešovickáchˇ 2, 18000 Prague, Czech Republic 3 SETI Institute, Carl Sagan Center, 189 Bernado Avenue, Mountain View CA 94043, USA Received x-x-2017 / Accepted x-x-2017 ABSTRACT We present shape models and volume estimates of twenty asteroids based on relative photometry and adaptive optics images. We discuss error estimation and the effects of myopic deconvolution on shape solutions. For further analysis of the information capacities of data sources, we also present and discuss ambiguity and uniqueness results for the reconstruction of nonconvex shapes from photometry. Key words. Instrumentation: adaptive optics – Methods: numerical, analytical – Minor planets, asteroids: general – Techniques: photometric 1. Introduction we construct shape models using both unprocessed and decon- voluted images, and compare their differences. In our previous paper (Hanuš et al. 2017b), we derived 3D shape This paper is organized as follows. In Sect. 2 we describe models for about 40 asteroids by combining disk-integrated the data reduction steps and outline the ADAM shape optimiza- photometry, adaptive optics (AO) images, and stellar occulta- 1 tion procedure. We discuss our results and comment on some tion timings by the All-Data Asteroid modelling (ADAM , Vi- of the individual asteroids in Sect. 3. We present a procedure ikinkoski et al.
    [Show full text]
  • New Determination of the Mass of Pallas
    A&A 365, 627–630 (2001) Astronomy DOI: 10.1051/0004-6361:20000023 & c ESO 2001 Astrophysics New determination of the mass of Pallas E. Goffin Aartselaarstraat 14, 2660 Hoboken, Belgium e-mail: [email protected] Received 13 September 2000 / Accepted 6 October 2000 Abstract. Until very recently, the mass of minor planet 2 Pallas had been determined from its gravitational effects on only 1 Ceres and the planet Mars. An independent confirmation was therefore highly desirable. This paper presents individual mass determinations based on close encounters with 16 other minor planets, as well −10 as a simultaneous solution using all objects. The resulting value for the mass of Pallas, (1.17 0.03) 10 M , essentially confirms the result from Ceres alone. Key words. astrometry – minor planets, asteroids – planets and satellites: individual: 2 Pallas 1. Introduction from perturbations on 8 minor planets, but retained only the results from 582 Olympia and 9 Metis for his final The first determination ever of the mass of Pallas was result. made by Schubart (1974). He revised it in Schubart (1975) Here I present new mass determinations of Pallas, both and later gave a better value (Schubart & Matson 1979) individual and simultaneous, based on close encounters using an improved value for the mass of Vesta. His work with several other minor planets. was based on the near 1:1 mean-motion resonance be- tween the orbits of Ceres and Pallas. This resulted in a series of moderately close approaches in the first part of 2. Minor planet selection and observations the 19th century, leaving observable gravitational effects Possible candidates for mass determinations were selected in the co-ordinates of both minor planets.
    [Show full text]
  • Adaptive Optics and Lightcurve Data of Asteroids: Twenty Shape Models and Information Content Analysis
    A&A 607, A117 (2017) Astronomy DOI: 10.1051/0004-6361/201731456 & c ESO 2017 Astrophysics Adaptive optics and lightcurve data of asteroids: twenty shape models and information content analysis M. Viikinkoski1, J. Hanuš2, M. Kaasalainen1, F. Marchis3, and J. Durechˇ 2 1 Department of Mathematics, Tampere University of Technology, PO Box 553, 33101 Tampere, Finland e-mail: [email protected] 2 Astronomical Institute, Faculty of Mathematics and Physics, Charles University, V Holešovickáchˇ 2, 18000 Prague, Czech Republic 3 SETI Institute, Carl Sagan Center, 189 Bernado Avenue, Mountain View, CA 94043, USA Received 28 June 2017 / Accepted 16 August 2017 ABSTRACT We present shape models and volume estimates of twenty asteroids based on relative photometry and adaptive optics images. We discuss error estimation and the effects of myopic deconvolution on shape solutions. For further analysis of the information capacities of data sources, we also present and discuss ambiguity and uniqueness results for the reconstruction of nonconvex shapes from photometry. Key words. methods: numerical – methods: analytical – minor planets, asteroids: general – techniques: photometric – instrumenta- tion: adaptive optics 1. Introduction artifacts. To investigate the usefulness of myopic deconvolution, we construct shape models using both unprocessed and decon- In our previous paper (Hanuš et al. 2017b), we derived three- voluted images, and compare their differences. dimensional (3D) shape models for about 40 asteroids by com- This paper is organized as follows. In Sect.2 we describe bining disk-integrated photometry, adaptive optics (AO) images, the data reduction steps and outline the ADAM shape optimiza- and stellar occultation timings by the All-Data Asteroid model- 1 tion procedure.
    [Show full text]
  • The Minor Planet Bulletin (Warner Et Al., 2009A)
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 4, A.D. 2009 OCTOBER-DECEMBER 133. NEW LIGHTCURVES OF 8 FLORA, 13 EGERIA, consistent with a period near 12.9 h. Hollis et. al. (1987) derived a 14 IRENE, 25 PHOCAEA, 40 HARMONIA, 74 GALATEA, period of 12.790 h. Di Martino (1989) and Harris and Young AND 122 GERDA (1989) also found periods of approximately 12.87 h, as did Piiornen et al. (1998). Torppa et al. (2003) found a sidereal period Frederick Pilcher of 12.79900 h using lightcurve inversion techniques. Several 4438 Organ Mesa Loop attempts have also been made to determine the spin axis Las Cruces, NM 88011 USA orientation for Flora. Hollis et al. (1987) reported a pole longitude [email protected] near 148° while Di Martino et al. (1989) found two possible solutions at longitude 140° or 320°. Torppa et al. (2003) found a (Received: 2009 Jun 30 Revised: 2009 Aug 2) pole solution of (160°, +16°) and sidereal period of 12.79900 h, similar to (155°, +5°) found by Durech (2009a), both using lightcurve inversion methods. Durech’s sidereal period, however, New lightcurves yield synodic rotation periods and was 12.86667 h. amplitudes for: 8 Flora, 12.861 ± 0.001 h, 0.08 ± 0.01 mag; 13 Egeria, 7.0473 ± 0.0001 h, 0.15 ± 0.02 mag in New observations of the asteroid obtained by the author on 8 2007, 0.37 ± 0.02 mag in 2009; 14 Irene, 15.089 ± nights from 2009 Feb.
    [Show full text]
  • Download This Article in PDF Format
    A&A 624, A121 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834541 & © ESO 2019 Astrophysics The shape of (7) Iris as evidence of an ancient large impact??,?? J. Hanuš1, M. Marsset2,3, P. Vernazza4, M. Viikinkoski5, A. Drouard4, M. Brož1, B. Carry6, R. Fetick4,7, F. Marchis8, L. Jorda4, T. Fusco4,7, M. Birlan9, T. Santana-Ros10, E. Podlewska-Gaca10,11, E. Jehin12, M. Ferrais12, J. Grice6,13, P. Bartczak10, J. Berthier9, J. Castillo-Rogez14, F. Cipriani15, F. Colas9, G. Dudzinski´ 10, C. Dumas16, J. Durechˇ 1, M. Kaasalainen5, A. Kryszczynska10, P. Lamy4, H. Le Coroller4, A. Marciniak10, T. Michalowski10, P. Michel6, M. Pajuelo9,17, P. Tanga6, F. Vachier9, A. Vigan4, O. Witasse15, and B. Yang18 1 Institute of Astronomy, Charles University, Prague, V Holešovickáchˇ 2, 18000 Prague 8, Czech Republic e-mail: [email protected]; [email protected] 2 Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 3 Astrophysics Research Centre, Queen’s University, Belfast BT7 1NN, UK 4 Aix Marseille Université, CNRS, LAM, Laboratoire d’Astrophysique de Marseille, Marseille, France 5 Department of Mathematics, Tampere University of Technology, PO Box 553, 33101 Tampere, Finland 6 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France 7 ONERA, The French Aerospace Lab BP72, 29 avenue de la Division Leclerc, 92322 Chatillon Cedex, France 8 SETI Institute, Carl Sagan Center, 189 Bernado Avenue, Mountain View, CA 94043, USA 9 IMCCE, Observatoire
    [Show full text]