Stratigraphy of the De Ckelly Sandstone of Arizona And

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphy of the De Ckelly Sandstone of Arizona And Stratigraphy of the De Chelly sandstone of Arizona and Utah Item Type text; Dissertation-Reproduction (electronic) Authors Peirce, H. Wesley (Howard Wesley) Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 04:13:05 Link to Item http://hdl.handle.net/10150/565596 • • • ' ' ft-'. : STRATIGRAPHY OF THE DE CKELLY SANDSTONE OF ARIZONA AND UTAH /*• - - Hoc Wesley Peirce A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1962 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by H, Wesley Peirce entitled ^Stratigraphy of the De Chelly Sandstone of Arizona and Utah” be accepted as fulfilling the dissertation requirement of the degree of Doctor of Philosophy, After inspection of the dissertation, the following members of the Final Examination Committee concur in its approval and recommend its acceptance:* /kIa Qizm. ,______ //A/ / v / / / * / £ ^ / / > 7 ™ ^ /V . 1% "lAy • c'^W -JuR _$V v l ! / (a / ^ 2 — *This approval and acceptance is contingent on the candidate's adequate performance and defense of this dissertation at the final oral examina­ tion* The inclusion of this sheet bound into the library copy of the dis­ sertation is evidence of satisfactory performance at the final examina­ tion. STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of require­ ments for an advanced degree at The University of Arizona and is de­ posited in The University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in their judgment the proposed use of the material is in the interests of scholar­ ship. In all other instances, however, permission must be obtained from the author. SIGNED: I STRATIGRAPHY OF THE DEC KELLY SANDSTONE OF ARIZONA AND UTAH by H. Wesley Peirce ABSTRACT The Permian De Chelly Sandstone of Gregory can be subdivided, on the basis of contrasting depositional environments, into five members no one of which is coextensive with the De Chelly Sandstone as a whole. The distribution of these members reflects instability in part of the area formerly occupied by the earlier Paleozoic Defiance Positive ele­ ment. The various members.of the De Chelly are believed to correlate with: (1) the uppermost evaporitic and dark detrital sediments of the Supai Formation found in the subsurface to the south of the Defiance Plateau, (2) the Coconino Sandstone of the Grand Canyon region, and (3) the San Andres Formation of the Zuni area in New Mexico. Emphasis is placed on: (1) the distribution and nature of sedimentary structural types such as cross stratification, stratification, channels, and ripple marks, and (2) modification of sandstone characteristics by secondary solution and cementation processes. TABLE OF CONTENTS.......... .................. ......................... » .... ., . Page INTRODUCTION ....................... ....................................................... 1 General Statement,........... ...................................................... 1 . Purpose ............................................................. ....................... 1 Description of Areas........... .................................... .................. 2 Defiance Plateau .............. 2 Monument V alley ............................. 5 Methods of Study ................................................ 6 Acknowledgments ................................. 6 HISTORICAL SKETCH ....................... 9 General Statement .................................................. 9 Previous Workers and Nomenclature .................................... 9 STRATIGRAPHY ....................................................................................... 16 Definition of the De Chelly Sandstone......... .............................. 16 Contacts ........................................................................................ 27 Upper Contact.......................................................... 27 Defiance Plateau ................................................ 27 Monument Valley ...••.............................................. 32 Lower.Contact ................................................................... 32 Defiance Area ...................................................... 32 Monument V a lle y .......................................... 34 Age................................................................... 40 Sedimentary Structures ...................................................... 43 General Statement .... ..... .... ... 43 v Page Stratification ..V................................. 44 : : Cross .Stratification............................................. 51 ! White House Member . •...................... 51 Black Creek Member ............................................ 67 'a--' - Hunters JPouxt.A4ember ....................... 78 Texture ............................................................. 86 '' ' ' V Grain S iz e ................................................................................... 86 Grain Roundness, Shape, and Surface Character­ istics ......................................................................... 96 Composition ......................................................................................... 99 General Statement........................ ....... 99 Depositional Components..................................... 101 Post-Depositional Components................................ 106 Cementation ........................................ 114 General Statement............................... 114 Carbonates ............................................................................ 115 Quartz ............................................ 120 Stylolites ................... 129 Regional Correlation .................................................... 132 Paleogeography......................................................... 143 Conditions of Deposition ............... ..................................... 144 Hunters Point Member ................................................... 144 Oak Springs Member...................................... 146 White House,Member................................................... 147 Black Creek Member................................................. 148 Fort Defiance Member ....................... 149 SUMMARY.......................................................................................... 151 APPENDIX A— DEFINITIONS OF SOME STRATIFICATION TERMS ..................................................................................................... 157 vi Page APPENDIX B— CRITERIA FOR CLASSIFICATION OF CROSS STRATIFICATION ........................................ ... ................................. 158 APPENDIX C— DESCRIPTION OF MEASURED SECTIONS .... 160 REFERENCES CITED................................ 204 LIST OF FIGURES Figure Page 1. Index map showing location of Defiance Plateau and Monument Valley areas ..................... ............................ 3 2. Percentage distribution of types of stratification in • the De Chelly Sandstone of the Defiance Plateau area.......................................................................................... 45 3. Percentage distribution of types of stratification in the De Chelly Sandstone of the Defiance Plateau area ...................................................................... 46 4. Relative numbers and average .thicknesses of units with contrasting types of stratification found in the White House and Black.Creek Members of the . Defiance Plateau ........... ...................................... 49 5. Relative numbers and average thicknesses of units with contrasting types of stratification found in the Hunters Point Member of the Defiance Plateau ....... 50 6. Direction of dip of cross strata ............................................. 69 7 . ; Dip angles of cross s tr a ta .................................................... 70 8. Histograms showing average grain-size distribution in the De Chelly Sandstone ............................................... 89 9. Histograms showing average grain-size distribution in the De Chelly Sandstone ...................................................... 90 vii Figure Page 10. Histograms showing average grain-size distribution in the Be Chelly Sandstone .......................... 91 11. Classification of the Be Chelly Sandstone based upon composition........................... .............. .............. ...................... 100 12. Correlation chart—Befiance Plateau to Zuni Moun­ tains. Comparing Baars, Read, and this paper............. 134 13. Correlation of prominent Permian sandstones of northeastern Arizona with White House and Black Creek Members of the Be Chelly Sandstone ..................... 138 14. Correlation chart of upper part of exposed Permian section, east
Recommended publications
  • Permian Stratigraphy of the Defiance Plateau, Arizona H
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/18 Permian stratigraphy of the Defiance Plateau, Arizona H. Wesley Peirce, 1967, pp. 57-62 in: Defiance, Zuni, Mt. Taylor Region (Arizona and New Mexico), Trauger, F. D.; [ed.], New Mexico Geological Society 18th Annual Fall Field Conference Guidebook, 228 p. This is one of many related papers that were included in the 1967 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Rainfall-Runoff Model for Black Creek Watershed, Navajo Nation
    Rainfall-Runoff Model for Black Creek Watershed, Navajo Nation Item Type text; Proceedings Authors Tecle, Aregai; Heinrich, Paul; Leeper, John; Tallsalt-Robertson, Jolene Publisher Arizona-Nevada Academy of Science Journal Hydrology and Water Resources in Arizona and the Southwest Rights Copyright ©, where appropriate, is held by the author. Download date 25/09/2021 20:12:23 Link to Item http://hdl.handle.net/10150/301297 37 RAINFALL-RUNOFF MODEL FOR BLACK CREEK WATERSHED, NAVAJO NATION Aregai Tecle1, Paul Heinrich1, John Leeper2, and Jolene Tallsalt-Robertson2 ABSTRACT This paper develops a rainfall-runoff model for estimating surface and peak flow rates from precipitation storm events on the Black Creek watershed in the Navajo Nation. The Black Creek watershed lies in the southern part of the Navajo Nation between the Defiance Plateau on the west and the Chuska Mountains on the east. The area is in the semiarid part of the Colorado Plateau on which there is about 10 inches of precipitation a year. We have two main purposes for embarking on the study. One is to determine the amount of runoff and peak flow rate generated from rainfall storm events falling on the 655 square mile watershed and the second is to provide the Navajo Nation with a method for estimating water yield and peak flow in the absence of adequate data. Two models, Watershed Modeling System (WMS) and the Hydrologic Engineering Center (HEC) Hydrological Modeling System (HMS) that have Geographic Information System (GIS) capabilities are used to generate stream hydrographs. Figure 1. Physiographic map of the Navajo Nation with the Chuska The latter show peak flow rates and total amounts of Mountain and Deance Plateau and Stream Gaging Stations.
    [Show full text]
  • Oil and Gas Plays Ute Moutnain Ute Reservation, Colorado and New Mexico
    Ute Mountain Ute Indian Reservation Cortez R18W Karle Key Xu R17W T General Setting Mine Xu Xcu 36 Can y on N Xcu McElmo WIND RIVER 32 INDIAN MABEL The Ute Mountain Ute Reservation is located in the northwest RESERVATION MOUNTAIN FT HALL IND RES Little Moude Mine Xcu T N ern portion of New Mexico and the southwestern corner of Colorado UTE PEAK 35 N R16W (Fig. UM-1). The reservation consists of 553,008 acres in Montezu BLACK 666 T W Y O M I N G MOUNTAIN 35 R20W SLEEPING UTE MOUNTAIN N ma and La Plata Counties, Colorado, and San Juan County, New R19W Coche T Mexico. All of these lands belong to the tribe but are held in trust by NORTHWESTERN 34 SHOSHONI HERMANO the U.S. Government. Individually owned lands, or allotments, are IND RES Desert Canyon PEAK N MESA VERDE R14W NATIONAL GREAT SALT LAKE W Marble SENTINEL located at Allen Canyon and White Mesa, San Juan County, Utah, Wash Towaoc PARK PEAK T and cover 8,499 acres. Tribal lands held in trust within this area cov Towaoc River M E S A 33 1/2 N er 3,597 acres. An additional forty acres are defined as U.S. Govern THE MOUND R15W SKULL VALLEY ment lands in San Juan County, Utah, and are utilized for school pur TEXAS PACIFIC 6-INCH OIL PIPELINE IND RES UNITAH AND OURAY INDIAN RESERVATION Navajo poses. W Ramona GOSHUTE 789 The Allen Canyon allotments are located twelve miles west of IND RES T UTAH 33 Blanding, Utah, and adjacent to the Manti-La Sal National Forest.
    [Show full text]
  • Navajo Culture and Forestry Works Matthew Incha Origins and Beliefs
    Navajo Culture and Forestry Works Matthew Incha Origins and Beliefs Navajo culture provides a story of four worlds to explain their origins. The story can be told with numerous variations, but all agree on the following outline: The first world (black world) is where various spiritual beings began life and is where they were given names describing insects and animals. Altse Hastiin (first man) and Altse Asdzaa (first woman) were also created in this world. The beings were unable to live together in harmony so they passed through an opening in the east and entered the second world. Beings and animals that were in constant disagreement occupied the second world, the blue world.. First man and first woman faced tremendous hardships here, and crossed into the third world with the bluebird and coyote through an opening in the south. In the third world (yellow world) first man and first woman encountered great rivers flowing from east to west and north to south. Coyote stole water from the great rivers, which caused a great flood. To escape the rising waters the spiritual beings along with first man and first woman they climbed a reed that extended into the fourth world through an opening created by locusts. The fourth world (white world) was inhabited by beings that required the locusts to pass tests of character before the any beings from the third world could enter. The locusts passed the tests and all were allowed to enter the fourth world. In this world first man and first woman formed four sacred mountains with sacred dirt they had brought from the first world.
    [Show full text]
  • Fluvial Systems – Meandering Rivers Rio Solimoes, Brazil Synthetic Aperture Radar Characteristics of Meandering Rivers
    Fluvial systems – meandering rivers Rio Solimoes, Brazil synthetic aperture radar Characteristics of meandering rivers generally confined within one major channel secondary channels active during floods wide valley, channel is a small part of entire valley Characteristics of meandering rivers Compared with braided river: •low gradient • greater sinuosity • greater % suspended load (less bedload) • finer-grained sediments • more constant discharge (usually perennial flow) Meanders, San Joaquin River cohesive banks, little coarse sediment Meanders, Sacramento River (transitional) less cohesive banks, moderate coarse sediment Amazon River meanders an extreme in bank stability (short-term) Scroll plain Rio Apure, Orinoco Basin Meanders and scroll plains Cross section of river valley & channel River valley Active river channel A natural river valley Landforms Note: levees along outside of meanders Meandering and sinuosity Path of highest-velocity flow Point bars lateral accretion of point bars along inside of meander Cut bank and point bar Cut bank, Fountain Creek, New Mexico Point bar, upstream Fountain Creek, New Mexico Point bar, downstream Fountain Creek, New Mexico Flood channel Enhanced turbulence at confluence text Features of a meandering river Figure 5.12a Figure 5.12b Figure 5.12b Figure 5.12c Figure 5.12c Meander cut-off Forming an oxbow lake Overbank deposition Bankfull discharge flood water level up to the top of the channel maintains the primary channel occurs once every 1-2 years Bankfull discharge Bankfull Average flow Figure
    [Show full text]
  • Primary Sedimentary Structures in Some Metamorphic Rocks
    Sedimentary Structures in Metamorphic Rocks Maine Geological Survey Maine Geologic Facts and Localities November, 2006 Primary Sedimentary Structures in Some Metamorphic Rocks Text by Thomas K. Weddle Maine Geological Survey, Department of Agriculture, Conservation & Forestry 1 Sedimentary Structures in Metamorphic Rocks Maine Geological Survey Introduction In most introductory geology classes, be it in an elementary school or at a college, students learn that there are three fundamental rock types: sedimentary, igneous, and metamorphic rocks. Sedimentary rocks are formed by the deposition of sediment by several processes, either by settling of sediment particles in a body of water, by chemical precipitation in water, or by transportation of the particles by water such as streams and rivers, or by wind (Figures 1-3). Maine Geological Survey Photo by Thomas K. Weddle K. Thomas by Photo Figure 1. Glacial marine sand beds with nearly parallel, horizontal layering, Buckfield, ME (entrenching tool for scale). Maine Geological Survey, Department of Agriculture, Conservation & Forestry 2 Sedimentary Structures in Metamorphic Rocks Maine Geological Survey Sedimentary Rocks Maine Geological Survey Photo by Thomas K. Weddle K. Thomas by Photo Figure 2. Fluvial trough cross bedding in slightly gravelly, coarse sand. The cross bed sets are incised into one another and highlighted by the darker colored layers (entrenching tool for scale), Buckfield, Maine. Maine Geological Survey, Department of Agriculture, Conservation & Forestry 3 Sedimentary Structures in Metamorphic Rocks Maine Geological Survey Sedimentary Rocks Maine Geological Survey Photo by Thomas K. Weddle K. Thomas by Photo Figure 3. Coarse cobble gravel in a glacial fluvial deposit, Kingfield, Maine (entrenching tool for scale).
    [Show full text]
  • The Character of Channel Planform Control on the Morphology And
    THE CHARACTER OF CHANNEL PLANFORM CONTROL ON THE MORPHOLOGY AND SEDIMENTOLOGY OF THE GRAVEL-BED SQUAMISH RIVER FLOODPLAIN, BRITISH COLUMBIA GARY J. BRIERLEY B.A.(Hons), Durham University, 1981 M.Sc., Simon Fraser University, 1984 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Geography 0 GARY J. BRIERLEY 1989 SIMON FRASER UNIVERSITY February, 1989 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. APPRWAL Name : Gary John Brierley Degree: Doctor of Philosophy Title of Thesis: The Character of Channel Planfom Control on the Morphology and Sedimentology of the Gravel-Bed Squamish River Floodplainr British Columbia Examining Cmittee: Chairman: J.T. Pierce Associate Professor E.J. Hickin Professor Senior Supervisor M.C. Roberts Professor -- -- 7 --* A.D. Miall Professor Department of Geology University of Toronto / V -.-. -. - i -- - / D.G. Sith Professor External Examiner Department of Geography University of Calgary PART IAL COPYR l GHT L I CENSE I hereby grant to Simon Fraser Unlverslty the right to lend my thesis, proJect or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or In response to a request from the library of any other unlverslty, or other educatlonal institution, on its own behalf or for one of Its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies.
    [Show full text]
  • Jurassic Rocks of Northeast Arizona and Adjacent Areas Robert B
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/24 Jurassic rocks of northeast Arizona and adjacent areas Robert B. O'Sullivan and Lawrence C. Craig, 1973, pp. 79-85 in: Monument Valley (Arizona, Utah and New Mexico), James, H. L.; [ed.], New Mexico Geological Society 24th Annual Fall Field Conference Guidebook, 232 p. This is one of many related papers that were included in the 1973 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Sedimentary Ripple Marks from Pavements of Forts in Jaipur, Rajasthan. India Author & Affiliation Guruswamy Srikanth, Akshaya Apartment
    Sedimentary Ripple marks from pavements of forts in Jaipur, Rajasthan. India Author & Affiliation Guruswamy Srikanth, Akshaya Apartment. R10/4. 6Th Avenue. Anna Nagar. Chennai 600040. India www.linkedin.com/in/Dr-G-Srikanth-PetroleumEnP https://goo.gl/DVihN0 [email protected] [email protected] Open access from https://eartharxiv.org Key words: Ripple marks, sedimentary structure, Jaipur, Nahargar, Jaigarh, India Abstract Ripple marks and their patterns are strongly indicative of the depositional energy in fluvial, coastal and shallow-marine environments. Prolific occurrence of a variety of ripple trains in popular forts of Jaipur are observed during a tourist visit. These extensive ripples are described using few standard measures and methods through interpretation of their digital images. The objective is to elucidate the variety and extent of the observed samples and to bring forward their measurement and interpretation possibilities . The importance and convenience in detailed systematic study of sedimentary structures towards quantitative sedimentology is explained . These easily accessible and interpretable structures are significant in teaching and research of sedimentology and stratigraphy. The occurrence of such vast treasure of sedimentary record at very accessible and convenient locations is highlighted. Introduction Ripple marks are sedimentary structures produced by the interaction of waves or currents with the material on the sediment surface. They are formed in modern sedimentary environments by the small-scale processes that reshape the sediment into undulatory surface by systematic binning and motion of the loose particles. Found commonly in a great variety of scales and processes, ripple marks are seen from the active sedimentary systems to the most ancient rocks in Geology.
    [Show full text]
  • Canyon De Chelly National Monument Foundation Document Overview
    NATIONAL PARK SERVICE • U.S. DEPARTMENT OF THE INTERIOR Foundation Document Overview Canyon de Chelly National Monument Arizona Contact Information For more information about the Canyon de Chelly National Monument Foundation Document, contact: [email protected] or (928) 674-5500 or write to: Superintendent, Canyon de Chelly National Monument, P.O. Box 588, Chinle, AZ 86503 Purpose Significance Significance statements express why Canyon de Chelly National Monument resources and values are important enough to merit national park unit designation. Statements of significance describe why an area is important within a global, national, regional, and systemwide context. These statements are linked to the purpose of the park unit, and are supported by data, research, and consensus. Significance statements describe the distinctive nature of the park and inform management decisions, focusing efforts on preserving and protecting the most important resources and values of the park unit. • Relationships. Located on Navajo trust land and having a resident community, Canyon de Chelly is unique among national park units. A mutual decision was made to establish the site as a national monument because the National Park Service and Navajo Tribal Council recognized the importance of Canyon de Chelly. The National Park Service, Navajo Nation, and canyon community work in conjunction to manage park resources and enable traditional and contemporary lifeways. • Cultural Continuity. Canyon de Chelly National Monument preserves one of the longest continually
    [Show full text]
  • An Extended Winter Fog Event in Arizona's Little Colorado
    AN EXTENDED WINTER FOG EVENT IN ARIZONA’S LITTLE COLORADO RIVER VALLEY Robert Bohlin, WFO Flagstaff, AZ INTRODUCTION Extended dense fog events of three continuous days or more are rare in Northern Arizona and typically occur in the Little Colorado River Valley (LCRV). Based on Winslow airport surface observations from NCDC, extended fog events with ¼ mile visibility or lower have occurred at least 11 times in the LCRV from 1952 to present. During this same time period the month of December recorded 7 of these 11 events, more than any other month. The purpose of this WES case was to help forecasters anticipate the onset, duration, and dissipation of these extended LCRV fog events. This study examines one event which started on December 9th 2004 and ended on December 15th 2004. Prior to the fog event, a winter storm moved into northern Arizona covering the entire LCRV with 3 to 9 inches of snow. After the snowfall, a significant warm up in temperatures caused the snowfall to melt rapidly. The available moisture was trapped in the LCRV by a strong subsidence cap which prevented both vertical mixing and horizontal advection of the moist airmass under the cap. This fog event produced a significant visibility hazard (Fig. 1) for six days as an extensive area of fog eventually blanketed much of northeastern Arizona. Fig 1. Photos of Wupatki National Monument following the snowstorm and subsequent fog event. Courtesy of the National Park Rangers at Wupatki NM. TOPOGRAPHY OF THE LITTLE COLORADO RIVER VALLEY AND NORTHERN ARIZONA. The Little Colorado River Valley basin (Fig.
    [Show full text]
  • Page -  Paleo Lab #4 - Sedimentary Environments
    page - Paleo Lab #4 - Sedimentary Environments 1. CHARACTERISTICS OF SEDIMENT Grain size and grain shape: The sizes and shapes of sedimentary particles (grains) are modified considerably during their transportation to the site of deposition. For example, abrasion of particles tends to round off jagged edges and corners, producing smaller grains with smooth, rounded surfaces and spherical shapes. Thus, a sand grain eroded from a hill in Wisconsin and carried down the Mississippi River will be smaller, better rounded, and more nearly spherical when it gets to New Orleans than it was when it passed Memphis. In addition, the higher the velocity (or energy) of the transporting agent (wind, water currents), the larger the grains that can be moved. An example of this is commonly seen in marine environments where, as the distance from shore increases, particle size of the sediments decreases due to the decreasing energy of water currents and increasing distance from the sediment source (i.e., land). Finally, continuous transportation tends to produce a well-sorted sediment in which all of the particles are more or less of the same size. A good example is a beach, where the constant swash and backwash of waves tend to produce well-sorted sand deposits. Mineral composition: Detrital grains (composed of particles derived from pre-existing rocks), which occur in a variety of sizes, (e.g., boulders, pebbles, sand, silt, and mud) may be found in almost any environment. The percentage of quartz present is commonly taken as a measure of the maturity (degree of weathering) of the detrital sediment prior to deposition.
    [Show full text]