Secure Collaborative Planning, Forecasting, and Replenishment (SCPFR)
Secure Collaborative Planning, Forecasting, and Replenishment (SCPFR) Mikhail Atallah* · Marina Blanton* · Vinayak Deshpande** Keith Frikken* · Jiangtao Li* · Leroy B. Schwarz** * Department of Computer Sciences ** Krannert School of Management Purdue University West Lafayette, IN 47907 May 30, 2005 Extended Abstract 1. Introduction It is well known that information-sharing about inventory levels, sales, order-status, demand forecasts, production/delivery schedules, etc. can dramatically improveme supply-chain per- formance. Lee and Whang (2000) describe several real-world examples. The reason for this improvement, of course, isn’t information-sharing, per se, but, rather, because shared infor- mation improves decision-making. However, despite its well-known benefits, many companies are averse to sharing their so-called “private” information, fearful that their partner(s) or competitor(s) will take advantage of it. Secure Multi-Party Computation (SMC) provides a framework for supply-chain partners to make collaborative forecasts and/or collaborative decisions without disclosing private in- formation to one another; and, most important, without the aid of a “trusted third party”. SMC accomplishes this through the use of so-called protocols. An SMC protocol involves theoretically-secure hiding of private information (e.g., encryption), transmission, and pro- cessing of hidden private data. Since private information is never available in its original form (e.g., if encryption is used to hide the data, it is never decrypted), any attempt to hack or misuse private information is literally impossible. In our research, we apply SMC protocols to facilitate collaborative forecasting and inventory-replenishment decisions between a single supplier and a single retailer. The model is an extension of Clark and Scarf (1960).
[Show full text]