Linköping Studies in Science and Technology Dissertations, No. 1402 Pinhole Camera Calibration in the Presence of Human Noise Magnus Axholt Department of Science and Technology Linköping University SE-601 74 Norrköping, Sweden Norrköping, 2011 Pinhole Camera Calibration in the Presence of Human Noise Copyright © 2011 Magnus Axholt
[email protected] Division of Visual Information Technology and Applications (VITA) Department of Science and Technology, Linköping University SE-601 74 Norrköping, Sweden ISBN 978-91-7393-053-6 ISSN 0345-7524 This thesis is available online through Linköping University Electronic Press: www.ep.liu.se Printed by LiU-Tryck, Linköping, Sweden 2011 Abstract The research work presented in this thesis is concerned with the analysis of the human body as a calibration platform for estimation of a pinhole camera model used in Aug- mented Reality environments mediated through Optical See-Through Head-Mounted Display. Since the quality of the calibration ultimately depends on a subject’s ability to construct visual alignments, the research effort is initially centered around user studies investigating human-induced noise, such as postural sway and head aiming precision. Knowledge about subject behavior is then applied to a sensitivity analy- sis in which simulations are used to determine the impact of user noise on camera parameter estimation. Quantitative evaluation of the calibration procedure is challenging since the current state of the technology does not permit access to the user’s view and measurements in the image plane as seen by the user. In an attempt to circumvent this problem, researchers have previously placed a camera in the eye socket of a mannequin, and performed both calibration and evaluation using the auxiliary signal from the camera.