Statistical Analysis of Real Manufacturing Process Data Statistické Zpracování Dat Z Reálného Výrobního Procesu

Total Page:16

File Type:pdf, Size:1020Kb

Statistical Analysis of Real Manufacturing Process Data Statistické Zpracování Dat Z Reálného Výrobního Procesu View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital library of Brno University of Technology BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ U ČENÍ TECHNICKÉ V BRN Ě FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF MATHEMATICS FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY STATISTICAL ANALYSIS OF REAL MANUFACTURING PROCESS DATA STATISTICKÉ ZPRACOVÁNÍ DAT Z REÁLNÉHO VÝROBNÍHO PROCESU MASTER’S THESIS DIPLOMOVÁ PRÁCE AUTHOR Bc. BARBORA KU ČEROVÁ AUTOR PRÁCE SUPERVISOR Ing. JOSEF BEDNÁ Ř, Ph.D VEDOUCÍ PRÁCE BRNO 2012 Vysoké učení technické v Brně, Fakulta strojního inženýrství Ústav matematiky Akademický rok: 2011/2012 ZADÁNÍ DIPLOMOVÉ PRÁCE student(ka): Bc. Barbora Kučerová který/která studuje v magisterském navazujícím studijním programu obor: Matematické inženýrství (3901T021) Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma diplomové práce: Statistické zpracování dat z reálného výrobního procesu v anglickém jazyce: Statistical analysis of real manufacturing process data Stručná charakteristika problematiky úkolu: Statistické zpracování dat z konkrétního výrobního procesu, předpokládá se využití testování hypotéz, metody ANOVA a GLM, analýzy způsobilosti procesu. Cíle diplomové práce: 1. Popis metodologie určování způsobilosti procesu. 2. Stručná formulace konkrétního problému z technické praxe (určení dominantních faktorů ovlivňujících způsobilost procesu). 3. Popis statistických nástrojů vhodných k řešení problému. 4. Řešení popsaného problému s využitím statistických nástrojů. Seznam odborné literatury: 1. Meloun, M., Militký, J.: Kompendium statistického zpracování dat. Academica, Praha, 2002. 2. Kupka, K.: Statistické řízení jakosti. TriloByte, 1998. 3. Montgomery, D.,C.: Introduction to Statistical Quality Control. Chapman Vedoucí diplomové práce: Ing. Josef Bednář, Ph.D. Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2011/2012. V Brně, dne 24.11.2011 L.S. _______________________________ _______________________________ prof. RNDr. Josef Šlapal, CSc. prof. RNDr. Miroslav Doupovec, CSc., dr. h. c. Ředitel ústavu Děkan fakulty ABSTRACT This diploma thesis deals with statistical process control. Its goal is to analyze data from real manufacturing process of the revolver molding machine. The analysis is accomplished using the statistical hypothesis testing, the analysis of variance, the general linear model and the analysis of the process capability. The analysis of the data is done in statistical software Minitab 16. KEYWORDS Analysis of variance, capability of the process, statistical hypothesis testing ABSTRAKT Tématem této diplomové práce je statistická regulace výrobního procesu. Cílem bylo analyzovat data z reálného technologického procesu revolverového vstřikovacího lisu. Analýza byla provedena za užití statistického testování hypotéz, analýzy rozptylu, obec- ného lineárního modelu a analýzy způsobilosti procesu. Analýza dat byla provedena ve statistickém softwaru Minitab 16. KLÍČOVÁ SLOVA Analýza rozptylu, způsobilost procesu, statistické testování hypotéz KUČEROVÁ, Barbora Statistical analysis of real manufacturing process data: master’s thesis. Brno: Brno University of Technology, Faculty of Mechanical Engineering, Depart- ment of Mathematics, 2012. 49 p. Supervised by Ing. Josef Bednář, Ph.D. I hereby declare that I have elaborated my master’s thesis on my own under a guidance of Ing. Josef Bednář, Ph.D., and using the sources listed in the bibliography. Barbora Kučerová I would like to express a word of gratitude to my supervisor Ing. Josef Bednář PhD. for all his contributive suggestions and valuable comments which led to the completion of my thesis. Barbora Kučerová CONTENTS Introduction 7 1 Basic definitions 8 1.1 Probability space, random variable . .8 1.2 Random sample . 11 1.3 Important types of continuous probability distribution . 11 1.4 Statistical hypothesis testing . 13 1.5 t-test . 15 1.6 F-test . 15 2 Analysis of variance 16 2.1 Two-way ANOVA with interactions . 16 2.2 General linear model . 19 2.3 General linear model with fixed factor effects . 20 3 Capability of the process 23 3.1 The process capability indices . 23 4 Technical data processing 27 4.1 Analysis of variance . 27 4.2 Capability of the process . 36 Conclusion 47 Bibliography 48 List of symbols and abbreviations 49 INTRODUCTION Manufacturing process control and quality assurance are elements of a quality ma- nagement system, which is the set of policies, procedures, and processes used to ensure the quality of a product or a service. It is widely acknowledged that qua- lity management systems improve the quality of the products and services produ- ced, thereby improving market share, sales growth, sales margins, and competitive advantage, and helping to avoid litigation. Quality control methods in industrial production were first developed by statistician W. Edwards Deming. The International Organization for Standardization has outlined quality prin- ciples and the procedures for implementing a quality management system in ISO 9000:2000, ISO 9001:2000 and other documents. These documents have become the gold standards of best practices for ensuring quality and, in many fields, serve as the basis for regulation. An important element of quality assurance is the collection and analysis of data that measure the quality of the raw materials, components, products, and assembly processes. Statistical Process Control (SPC) is an effective method of monitoring a pro- duction process through the use of control charts. By collecting in-process data or random samples of the output at various stages of the production process, one can detect variations or trends in the quality of the materials or processes that may affect the quality of the end product. Because data are gathered during the production process, problems can be detected and prevented much earlier than methods that only look at the quality of the end product. Early detection of problems through SPC can reduce wasted time and resources and may detect defects that other me- thods would not. Additionally, production processes can be streamlined through the identification of bottlenecks, wait times, and other sources of delay by use ofSPC. In this diploma thesis we will process the data from concrete technological process to determine whether our data are influenced by some of the observed factors. The mathematical theory used to analyze the process is described in first chapters. For the data processing is used statistical hypothesis testing. Big part of the theory is focused on the analysis of variance, the general linear model and the capability of the process, as the most important parts of the statistical process control analysis, [1] and [2]. The practical part of the diploma thesis is application of the theory, which is introduced in the previous chapters. The analysis is done in statistical software Minitab 16. In Minitab we will be using the Quality Tools and the ANOVA. 8 1 BASIC DEFINITIONS 1.1 Probability space, random variable The nonempty set Ω of all the possible outcomes ! of an experiment is called the sample space of the experiment and its subsets are denoted as events. A 휎-algebra is a collection U of subsets of Ω with these properties: (i) ;, Ω 2 U. (ii) If A 2 U, then AC 2 U. (iii) If A1, A2, ::: 2 U, then 1 1 \ [ Ak; Ak 2 U: k=1 k=1 Where AC = Ω − A is the complement of A. Let U be a 휎-algebra of subset of Ω. We call P : U! [0; 1] a probability measure provided: (i) P (;) = 0;P (Ω) = 1. (ii) If A1, A2, ::: 2 U, then 1 ! 1 [ X P Ak ≤ P (Ak) : k=1 k=1 (iii) If A1, A2, ::: are disjoint sets in U, then 1 ! 1 [ X P Ak = P (Ak) : k=1 k=1 It holds that if A,B 2 U, then A ⊆ B implies P (A) ≤ P (B). A triple (Ω; U;P ) is called a probability space provided Ω is any set, U is a 휎 algebra of subsets of Ω, and P is a probability measure on U. A set A 2 U is called an event; points ! 2 Ω are sample points. P (A) is a probability of the event A. A property which is true except for an event of probability zero is said to hold almost surely (usually abbreviated “a.s.“). Let (Ω; U;P ) be a probability space. A mapping n X :Ω ! R is called an n-dimensional random variable if for each B 2 B, where B denotes the collection of Borel subsets of Rn, which is the smallest 휎-algebra of subsets of Rn containing all open sets, we have X−1(B) 2 U: 9 We equivalently say that X is U-measurable. Distribution function of random variable X is real function F (x) = P fX < xg = P fX 2 (−∞; x)g ; 8x 2 (−∞; 1) with following properties: (i) F is non-decreasing, (ii) F is right-continuous, (iii) limx!1 F (x) = 1, limx→−∞ F (x) = 0, (iv) P (a < X ≤ b) = F (b) − F (a); a < b, (v) P (X = x0) = F (x0) − lim − F (x), x!x0 (vi) F has finite number of discontinuities on (−∞; 1), (vii) 8x 2 (R) : 0 ≤ F (x) ≤ 1. Random variable X is uniquely determined with its distribution function and its probability distribution is given. Random variable X defined on probability space (Ω; A;P ) is discrete, if there P exists countable set M ⊂ R such that x2M P (X = x) = 1. Set M is then called the range of discrete random variable X and function p(x) = P (X = x), x 2 M and p(x) = 0, x 2 R − M is called probability function and we denote X ∼ (M; p). Probability function has following properties: P (i) p(x) ≥ 0; x 2 R, x2M p(x) = 1, P (ii) P (X 2 B) = x2B\M p(x);B 2 B, P (iii) F (x) = t2(−∞;x)\M p(t). Random variable X is continuous, if there exists non-negative function f such R 1 R x that −∞ f(x) dx = 1 and it holds for distribution function F (x) = −∞ f(t) dt.
Recommended publications
  • A Unit-Error Theory for Register-Based Household Statistics
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Zhang, Li-Chun Working Paper A unit-error theory for register-based household statistics Discussion Papers, No. 598 Provided in Cooperation with: Research Department, Statistics Norway, Oslo Suggested Citation: Zhang, Li-Chun (2009) : A unit-error theory for register-based household statistics, Discussion Papers, No. 598, Statistics Norway, Research Department, Oslo This Version is available at: http://hdl.handle.net/10419/192580 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Discussion Papers No. 598, December 2009 Statistics Norway, Statistical Methods and Standards Li-Chun Zhang A unit-error theory for register- based household statistics Abstract: The next round of census will be completely register-based in all the Nordic countries.
    [Show full text]
  • Statistical Units
    Statistical units Preface This chapter details the definitions of statistical units applicable in European business statistics, and is part of the online publication European Business Statistics manual. The statistical unit is the entity for which the required statistics are compiled. It is an analytical unit for which statistics are compiled. Statisticians create it by splitting or combining observation units with the help of estimations or imputations in order to supply more detailed and/or homogeneous data than would otherwise be possible. It is important to understand how it differs from the observation unit. The observation unit is the entity on which information is received. The observation unit and analytical unit may sometimes be the same. The reporting unit is the entity from which the recommended data items are collected. It will vary from sector to sector and from country to country, depending on institutional structures, the legal framework for data collection, traditions, national priorities and survey resources. It may or may not correspond to an observation unit and/or an analytical unit. Besides definitions and explanatory notes on each statistical unit, this chapter currently also includes more detailed operational rules. Whether to keep the full text version of the operational rules in this chapter or to include them merely as hyperlink will be investigated. Contents 1. Introduction 2. What's new 3. Enterprise 3.1 Definition 3.2 Explanatory note 3.3 Operational Rules 3.4 Operational rules for Head Offices, Holding Companies and Special Purpose Entities 4. Enterprise group 4.1 Definition 4.2 Explanatory notes 4.3 Additional explanations 4.4 Operational Rules 5.
    [Show full text]
  • A Guide to Writing a Good Codebook for Data Analysis Projects in Medicine
    Codebook cookbook A guide to writing a good codebook for data analysis projects in medicine 1. Introduction Writing a codebook is an important step in the management of any data analysis project. The codebook will serve as a reference for the clinical team; it will help newcomers to the project to rapidly have a flavor of what is at stake and will serve as a communication tool with the statistical unit. Indeed, when comes time to perform statistical analyses on your data, the statistician will be grateful to have a codebook that is readily usable, that is, a codebook that is easy to turn into code for whichever statistical analysis package he/she will use (SAS, R, Stata, or other). 2. Data preparation Whether you enter data in a spreadsheet such as Excel (as is currently popular in biomedical research) or a database program such as Access, there is much freedom in the way data can be entered. A few rules, however, should be followed, to make both the data entry and subsequent data analysis as smooth as possible. A specific example will be presented in Section 3, but first let‟s look at a few general suggestions. 2.1 Variables names A unique, unambiguous name should be given to each variable. Variables names MUST consist of one string only, consisting of letters and — when useful — numbers and underscores ( _ ). Spaces are not allowed in variables names in most statistical programs, even if data entry programs like Excel or Access will allow this. It is good practice to enter variables names at the top of each column.
    [Show full text]
  • Statistical Units in the System of National Accounts
    STATISTICAL UNITS IN THE SYSTEM OF NATIONAL ACCOUNTS Group of Experts on National Accounts Geneva, May 18 – 20, 2016 Jennifer Ribarsky Head of Section, OECD Introduction (1/2) • SNA 2008 distinguishes two different types of statistical units: – Establishment in supply and use tables – Institutional units in institutional sector accounts • Call for (re)considering statistical units, also call for possibly reconsidering classifications by industry • Going beyond the present standards of the 2008 SNA • Establishment of a Task Force on Statistical Units, looking at it from a more fundamental point of view 2 Introduction (2/2) SNA 2008, para. A4.21: “At the present there are two reasons to have the concept of establishment within the SNA. The first of these is to provide a link to source information when this is collected on an establishment basis. In cases where basic information is collected on an enterprise basis, this reason disappears. The second reason is for use in input-output tables. Historically, the rationale was to have a unit that related as far as possible to only one activity in only one location so that the link to the physical processes of production was as clear as possible. With the change of emphasis from the physical view of input-output to an economic view, and from product-by-product matrices to industry-by-industry ones, it is less clear that it is essential to retain the concept of establishment in the SNA”. 3 Why are establishments the preferred unit in the SNA 2008? • The premise in the SNA is that the establishment
    [Show full text]
  • Glossary of Terms
    Frascati Manual 2015 Guidelines for Collecting and Reporting Data on Research and Experimental Development © OECD 2015 ANNEX 2 Glossary of terms Accounting on an accruals basis recognises a transaction when the activity (decision) generating revenue or consuming resources takes place, regardless of when the associated cash is received or paid. See also accounting on a cash basis. Applied research is original investigation undertaken in order to acquire new knowledge. It is, however, directed primarily towards a specific, practical aim or objective. Appropriations are policy bills that provide / set aside money for specific government departments, agencies, programmes and/or functions. Appropria- tions provide legal authority to enter into obligations that will result in outlays. See also obligations and outlays. Authorisations are policy bills that establish, continue or modify govern- ment programmes and are often accompanied by spending ceilings or policy guidance for subsequent appropriations. However, an authorised funding level has no necessary link with an appropriated funding level. See also appropriations. Basic research is experimental or theoretical work undertaken primarily to acquire new knowledge of the underlying foundations of phenomena and observable facts, without any particular application or use in view. A branch campus abroad (BCA) is defined as a tertiary educational institution that is owned, at least in part, by a local higher education institution (i.e. resident inside the compiling country) but is located in the Rest of the world (resident outside the compiling country); operates in the name of the local higher education institution; engages in at least some face-to-face teaching; and provides access to an entire academic programme that leads to a credential awarded by the local higher education institution.
    [Show full text]
  • Statistical Analysis of Microarray Data in Sleep Deprivation
    Scholars' Mine Masters Theses Student Theses and Dissertations 2013 Statistical analysis of microarray data in sleep deprivation Stephanie Marie Berhorst Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Statistics and Probability Commons Department: Recommended Citation Berhorst, Stephanie Marie, "Statistical analysis of microarray data in sleep deprivation" (2013). Masters Theses. 7533. https://scholarsmine.mst.edu/masters_theses/7533 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. STATISTICAL ANALYSIS OF MICROARRAY DATA IN SLEEP DEPRIVATION by STEPHANIE MARIE BERHORST A THESIS Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN APPLIED MATHEMATICS 2013 Approved by Gayla R. Olbricht, Advisor Matthew Thimgan Robert Paige iii ABSTRACT Microarray technology is a useful tool for studying the expression levels of thousands of genes or exons within a single experiment. Data from microarray experiments present many challenges for researchers since costly resources often limit the experimenter to small sample sizes and large amounts of data are generated. The researcher must carefully consider the appropriate statistical analysis to use that aligns with the experimental design employed. In this work, statistical issues are investigated and addressed for a microarray experiment that examines how expression levels change over time as individuals are sleep deprived.
    [Show full text]
  • LEGEND Glossary Let Evidence Guide Every New Decision
    LEGEND Glossary Let Evidence Guide Every New Decision A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Adverse Event An adverse outcome occurring during or after the use of a drug or other intervention Related Terms but not necessarily caused by it. Side Effect Serious Adverse Event Adverse Drug Event Source/Copyright © Bandolier Glossary & The Cochrane Collaboration Glossary Applicability The extent to which the study results or effects of the study are appropriate and Related Terms relevant for use in a particular patient situation External Validity Internal Validity (e.g., patient characteristics, clinical setting, resources, organizational issues) Validity Reference Population Source/Copyright © The Cochrane Collaboration Glossary Attrition The loss of participants during the course of a study due to withdrawals, dropouts, or Synonyms protocol deviations which potentially introduces bias by changing the composition of Dropout the sample. Related Terms Lost to Follow Up Source/Copyright © The Cochrane Collaboration Glossary & Portney, Leslie. G. & Watkins, Mary, P. Foundations of Clinical Research Application to Practice. 2nd Edition. 2000. Prentice Hall Health. Upper Saddle River, New Jersey 07458. B Baseline Data Data which measures the outcome of interest prior to initiating any change or Related Terms intervention Baseline Characteristics Source/Copyright © The Cochrane Collaboration Glossary & Portney, Leslie. G. & Watkins, Mary, P. Foundations of Clinical Research Application to Practice. 2nd Edition. 2000. Prentice Hall Health. Upper Saddle River, New Jersey 07458. C Case(s) A person having a particular disease, disorder, or condition Source/Copyright © International Epidemiological Association, Inc.: Porta, M., Greenland, S., & Last, J.
    [Show full text]
  • The Tyranny of Census Geography: Small-Area Data and Neighborhood Statistics
    Point of Contention: Defining Neighborhoods Guest Editor: Ron Wilson U.S. Department of Housing and Urban Development Neighborhoods are a natural construct widely used for analytical purposes in research, policymaking, and practice, but defining a neighborhood for these purposes has always been difficult. This Point of Contention offers four articles about precisely bounding this often fuzzy concept. The authors provide a range of perspectives, from practitioner to researcher, about the construction of neighborhoods and the complexity of what neighbor- hood really means. The Tyranny of Census Geography: Small-Area Data and Neighborhood Statistics Jonathan Sperling U.S. Department of Housing and Urban Development The opinions expressed in this article are those of the author and do not necessarily reflect those of the U.S. Department of Housing and Urban Development. Census-defined small-area geographies and statistics in the United States are highly accessible, rela- tively easy to use, and available across time and space. The singular and strict use of block groups, census tracts, or ZIP Codes as proxies for neighborhood, however, are often inappropriate and can result in flawed findings, poor public policy decisions, and even situations in which families or businesses are disqualified from place-based government programs. Perceptions of neighborhoods are social constructs and context dependent. Yet social science literature is replete with an unques- tioning use of these geographies to measure neighborhood effects, despite evidence that the use of alternative spatial scales and techniques can deliver very different results.1 Census small-area statistics are artifacts of the geographic boundaries created by the Census Bureau, often in collaboration with local stakeholders.
    [Show full text]
  • Best Practice Guidelines for Developing International Statistical Classifications
    Best Practice Guidelines for Developing International Statistical Classifications Andrew Hancock, Chair, Expert Group on International Statistical Classifications Best Practice Guidelines for Developing International Statistical Classifications November 2013 1 Abbreviations CPC Central Product Classification ICD International Classification of Diseases ILO International Labour Organization ISCO International Standard Classification of Occupations ISIC International Standard Industrial Classification of All Economic Activities ISO International Organisation for Standardisation UNESCO United Nations Educational, Scientific and Cultural Organisation UNSD United Nations Statistics Division WHO World Health Organization Best Practice Guidelines for Developing International Statistical Classifications November 2013 2 Contents Introduction ................................................................................................................................ 4 Background ................................................................................................................................ 4 Defining a statistical classification .............................................................................................. 5 Principles to consider when developing an international statistical classification ........................ 7 Components of a Classification .................................................................................................12 Other Issues/Definitions ............................................................................................................16
    [Show full text]
  • Milton Terris1
    American Journal of EPIDEMIOLOGY Volume 136 Copyright © 1992 by The Johns Hopkins University Number 8 School of Hygiene and Public Health October 15,1992 Sponsored by the Society for Epidemiologic Research SPECIAL SOCIETY FOR EPIDEMIOLOGIC RESEARCH (SER) ISSUE: Downloaded from PAPERS PRESENTED AT THE 25TH ANNUAL MEETING OF THE SER, MINNEAPOLIS, MINNESOTA, JUNE 9-12, 1992 INVITED ADDRESSES http://aje.oxfordjournals.org/ The Society for Epidemiologic Research (SER) and the Future of Epidemiology at Oxford University Press for SER Members on April 15, 2014 Milton Terris1 I appreciate very much this opportunity SOCIAL MEDICINE IN GREAT BRITAIN to help celebrate the 25th Anniversary of the In that same year, 1943, John A. Ryle, Society for Epidemiologic Research (SER). the Regius Professor of Medicine at Cam- I think it will be useful to present the histor- bridge, resigned his position to become the ical background to the Society's formation first Professor of Social Medicine in Great as a necessary prelude for discussing SER Britain, accepting the Chair which had just and the future of epidemiology. been established at Oxford University. This I was a student in 1943 at the Johns dramatic event signalized the leap from in- Hopkins School of Hygiene and Public fectious disease to noninfectious disease ep- Health, where Wade Hampton Frost had idemiology. As Ryle stated, "Public health served as the first Professor of Epidemiology. ... has been largely preoccupied with the Frost had defined epidemiology as "the sci- communicable diseases, their causes, distri- ence of the mass-phenomena of infectious bution, and prevention. Social medicine is diseases" (1), and the epidemiology courses concerned with all diseases of prevalence, at Hopkins were limited entirely to infec- including rheumatic heart disease, peptic ul- tious diseases.
    [Show full text]
  • TRANSPORT STATISTICS Content
    TRANSPORT STATISTICS Reference Metadata in Euro SDMX Metadata Structure (ESMS) INSTAT Content 1. Contact ............................................................................................................................................... 2 2. Metadata update ............................................................................................................................... 2 3. Statistical presentation ..................................................................................................................... 2 4. Unit of measure ................................................................................................................................. 4 5. Reference period ............................................................................................................................... 4 6. Institutional mandate ........................................................................................................................ 4 7. Confidentiality ................................................................................................................................... 4 8. Release policy .................................................................................................................................... 5 9. Frequency of dissemination ............................................................................................................. 5 10. Accessibility and clarity .................................................................................................................
    [Show full text]
  • Part II: Biostatistics
    Page 1 of 28 Part II: Biostatistics 1. Statistical variable The unit that is the basis of the study is called the statistical unit (= smallest sampling unit, e.g. animal, herd, region, . .). A property of the given statistical unit that is the subject of the study is called a (statistical) variable. Variables are things that we measure, control, or manipulate in research. They differ in many respects, most notably in the role they are given in our research and in the type of measures that can be applied to them. It is an attribute that describes a person, place, thing, or idea. The value of the variable can "vary" from one entity to another. The following classification of variables is given solely for sake of completeness, because the distinction between the different categories is in reality not so unambiguous. Also, whether or not continuous variables exist in real life is more a matter of philosophy than hard science. 1.1. Quantitative vs. Qualitative Variables 1.1.1. Quantitative variables (measurement variables) A quantitative variable is a variable that can be expressed numerically. Its 'level' can both be measured and expressed by a quantity, which we call the value of the variable. The different states of the variable can be expressed in a numerically ordered fashion. Quantitative variables can be further classified as discrete or continuous. If a variable can take on any value between its minimum value and its maximum value, it is called a continuous variable; otherwise, it is called a discrete/discontinuous variable. 1.1.1.1. Continuous variables Continuous variables can (at least theoretically) take an infinite number of values between any two fixed points: e.g.
    [Show full text]