Developmental Dysplasia of the Hip (DDH) and Direct Subsequent Appropriate Treatment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Turnedhead Adductedhip Truncal Curvature Syndrome
Archives ofDisease in Childhood 1994; 70: 515-519 515 Turned head adducted hip truncal curvature syndrome Arch Dis Child: first published as 10.1136/adc.70.6.515 on 1 June 1994. Downloaded from Chiaki Hamanishi, Seisuke Tanaka Abstract curvature. An epidemiological analysis was One hundred and eight neonates and carried out to determine whether the intra- infants who showed the clinical triad of a uterine environment of these asymmetrically head turned to one side, adduction con- deformed babies had been restricted. The tracture of the hip joint on the occipital clinical course of each feature of the clinical side of the turned head, and truncal cur- triad was also analysed to determine whether vature, which we named TAC syndrome, TAC syndrome is aetiologically related to any were studied. These cases included seven subsequent paediatric disorders. with congenital and five with late infantile dislocations of the hip joint and 14 who developed muscular torticollis. Forty one Patients and methods were among 7103 neonates examined by We studied a total of 108 cases with TAC one of the authors. An epidemiological syndrome. Of them, 41 were among a total analysis confirmed the aetiology of the number of 7103 neonates personally examined syndrome to be environmental. The side by one of the authors (CH) at newborn exami- to which the head was turned and that of nations conducted at hospitals in four cities the adducted hip contracture showed a since 1981. Thirteen were referred neonates. high correlation with the side of the The remaining 54 were among infants aged maternal spine on which the fetus had from 10 days to 3 months who were referred to been lying. -
Canine Hip Dysplasia - by Patricia Long October, 2001
Canine Hip Dysplasia - by Patricia Long October, 2001 Edited by Melissa Zebley, DVM Contributions by: Sue Bacig, Brenda Briggs, Sue Brightman, Cathy Burlile, Janice Cagwin, Steve Dudley, Lisa Ebnet, Sue German, Kathy Maher, Ruth Reynolds, Rose Tierney, Sue Sanvido, Doug Smith Much has been written on hip dysplasia (HD), and this article is simply an attempt to summarize much of that information. For a more in-depth examination of HD, I urge you to read the articles by Susan Thorpe-Vargas and John Cargill which can be found on http://workingdogs.com/ Prevention - the ounce worth more than a pound Breeders have several methods of trying to minimize the risk of HD: OFA, GDC, PennHIP. But these registries are only able to identify some dogs that may have HD. They are not able to identify the dogs that carry the genes for HD. It is important to understand that no matter how many generations there are in the pedigree with hips rated clear, all this can do is to minimize the risk of HD - it can't eliminate it. HD is a polygenetic multifactorial condition, which means that we still don't know exactly what causes it. But without the genes for it, a dog won't get it without some other event such as an injury. What is HD? The hip joint is a clever device, the classic ball and socket joint. Properly constructed, the top of the thigh bone, or femoral head, is the ball that fits into the socket, or acetabulum, in the pelvis. But in dogs, as in humans, this joint does not always develop properly. -
British Veterinary Association / Kennel Club Hip Dysplasia Scheme
British Veterinary Association / Kennel Club Hip Dysplasia Scheme Breed Specific Statistics – 1 January 2001 to 31 December 2016 Hip scores should be considered along with other criteria as part of a responsible breeding programme, and it is recommended that breeders choose breeding stock with hip scores around and ideally below the breed median score, depending on the level of HD in the breed. HD status of parents, siblings and progeny for Kennel Club registered dogs should also be considered, and these together with a three generation Health Test Pedigree may be downloaded via the Health Test Results Finder, available on the Kennel Club’s online health tool Mate Select (www.mateselect.org.uk). In addition, estimated breeding values (EBVs) are available for breeds in which a significant number of dogs have been graded, via the same link. For further advice on the interpretation and use of hip scores see www.bva.co.uk/chs The breed median score is the score of the ‘average’ dog in that breed (i.e. an equal number of dogs in that breed have better and worse scores). No. 15 year No. 15 year 5 year 5 year Breed score in Breed score in Range Median Median Range Median Median 15 years 15 years Affenpinscher 40 8 – 90 13 14 Beagle 62 8 - 71 16 17 Afghan Hound 18 0 – 73 8.5 27 Bearded Collie 1511 0 – 70 9 9 Airedale Terrier 933 4 – 72 11 10 Beauceron 42 2 – 23 10 10 Akita 1029 0 – 91 7 7 Belgian Shepherd 249 0 – 37 8 8 Dog (Groenendael) Alaskan Malamute 1248 0 – 78 10 10 Belgian Shepherd 16 5 - 16 10 14 Dog (Laekenois) Anatolian 63 3 – 67 9 -
Orthopedic-Conditions-Treated.Pdf
Orthopedic and Orthopedic Surgery Conditions Treated Accessory navicular bone Achondroplasia ACL injury Acromioclavicular (AC) joint Acromioclavicular (AC) joint Adamantinoma arthritis sprain Aneurysmal bone cyst Angiosarcoma Ankle arthritis Apophysitis Arthrogryposis Aseptic necrosis Askin tumor Avascular necrosis Benign bone tumor Biceps tear Biceps tendinitis Blount’s disease Bone cancer Bone metastasis Bowlegged deformity Brachial plexus injury Brittle bone disease Broken ankle/broken foot Broken arm Broken collarbone Broken leg Broken wrist/broken hand Bunions Carpal tunnel syndrome Cavovarus foot deformity Cavus foot Cerebral palsy Cervical myelopathy Cervical radiculopathy Charcot-Marie-Tooth disease Chondrosarcoma Chordoma Chronic regional multifocal osteomyelitis Clubfoot Congenital hand deformities Congenital myasthenic syndromes Congenital pseudoarthrosis Contractures Desmoid tumors Discoid meniscus Dislocated elbow Dislocated shoulder Dislocation Dislocation – hip Dislocation – knee Dupuytren's contracture Early-onset scoliosis Ehlers-Danlos syndrome Elbow fracture Elbow impingement Elbow instability Elbow loose body Eosinophilic granuloma Epiphyseal dysplasia Ewing sarcoma Extra finger/toes Failed total hip replacement Failed total knee replacement Femoral nonunion Fibrosarcoma Fibrous dysplasia Fibular hemimelia Flatfeet Foot deformities Foot injuries Ganglion cyst Genu valgum Genu varum Giant cell tumor Golfer's elbow Gorham’s disease Growth plate arrest Growth plate fractures Hammertoe and mallet toe Heel cord contracture -
Cerebral Palsy with Dislocated Hip and Scoliosis: What to Deal with First?
Current Concepts Review Cerebral palsy with dislocated hip and scoliosis: what to deal with first? Ilkka J. Helenius1 Cite this article: Helenius IJ, Viehweger E, Castelein RM. Cer- Elke Viehweger2 ebral palsy with dislocated hip and scoliosis: what to deal Rene M. Castelein3 with first?J Child Orthop 2020;14: 24-29. DOI: 10.1302/1863- 2548.14.190099 Abstract Keywords: cerebral palsy; hip dislocation; neuromuscular Purpose Hip dislocation and scoliosis are common in children scoliosis; CP surveillance; hip reconstruction; spinal fusion with cerebral palsy (CP). Hip dislocation develops in 15% and surgery 20% of children with CP, mainly between three and six years of age and especially in the spastic and dyskinetic subtypes. The risk of scoliosis increases with age and increasing disabili- Introduction ty as expressed by the Gross Motor Function Score. Hip dislocation develops in 15% and 20% of children with Methods A hip surveillance programme and early surgical cerebral palsy (CP), mainly between three and six years 1 treatment have been shown to reduce the hip dislocation, of age, and especially in the spastic dyskinetic subtypes. but it remains unclear if a similar programme could reduce Children with Gross Motor Function Classification System the need for neuromuscular scoliosis. When hip dislocation (GMFCS) level V demonstrate an incidence of hip dis- 2 and neuromuscular scoliosis are co-existent, there appears to placement up to 90%. The risk of scoliosis increases with 3 be no clear guidelines as to which of these deformities should age and increasing disability (increasing GMFCS level). be addressed first: hip or spine. The risk of scoliosis is 1% for GMFCS level I at ten years of age and 5% at 20 years, but 30% for GMFCS V at ten Results Hip dislocation or windswept deformity may cause years and 80% at 20 years. -
Spondylolisthesis, with Description of a Case
[Reprinted from the Transactions of the American Orthopedic Association, 1897.] SPONDYLOLISTHESIS, WITH DESCRIPTION OP A CASE. ROBERT W. LOVETT, M.D., BOSTON. The name spondylolisthesis (ottovoo/loc, a vertebra, and bhadrjat c, a gliding) refers to a forward subluxation of the body of one of the lower lumbar vertebrae, with the exception of one recorded case where the upper part of the sacrum was displaced forward. This displacement has ordinarily been described as a dislocation ; in most instances it hardly reaches a greater degree than may be described by the name subluxation. Even this name is incorrect anatomic- ally. This is because the body of the vertebra is chiefly affected, while the laminae and spinous process remain practically in place. The condition has attracted attention chiefly from the obstetrical point of view, on account of the secondary pelvic changes produced, and surgical literature contains next to nothing about it. Fr. Neugebauer, 1 of Warsaw, has so thoroughly investigated and elab- orated the subject that whoever strives to elucidate it from any point of view must do so largely by quotations from his extensive writings. In 1854, when this condition was recognized and named by Killian, 2 there were described only four known anatomical speci- mens. In 1890, when Neugebauer’s treatise was written, there were one hundred and one clinical and anatomical observations. Blake, 3 Gibuey, 4 and Lombard 5 contributed the only recorded American observations. Between the publication of Neugebauer’s classic in 1892, which was written in 1890, and to-day there have been reported, so far as I could find, twenty-four more cases (two in men). -
Treatment and Outcomes of Arthrogryposis in the Lower Extremity
Received: 25 June 2019 Revised: 31 July 2019 Accepted: 1 August 2019 DOI: 10.1002/ajmg.c.31734 RESEARCH ARTICLE Treatment and outcomes of arthrogryposis in the lower extremity Reggie C. Hamdy1,2 | Harold van Bosse3 | Haluk Altiok4 | Khaled Abu-Dalu5 | Pavel Kotlarsky5 | Alicja Fafara6,7 | Mark Eidelman5 1Shriners Hospitals for Children, Montreal, Québec, Canada Abstract 2Department of Pediatric Orthopaedic In this multiauthored article, the management of lower limb deformities in children Surgery, Faculty of Medicine, McGill with arthrogryposis (specifically Amyoplasia) is discussed. Separate sections address University, Montreal, Québec, Canada 3Shriners Hospitals for Children, Philadelphia, various hip, knee, foot, and ankle issues as well as orthotic treatment and functional Pennsylvania outcomes. The importance of very early and aggressive management of these defor- 4 Shriners Hospitals for Children, Chicago, mities in the form of intensive physiotherapy (with its various modalities) and bracing Illinois is emphasized. Surgical techniques commonly used in the management of these con- 5Pediatric Orthopedics, Technion Faculty of Medicine, Ruth Children's Hospital, Haifa, ditions are outlined. The central role of a multidisciplinary approach involving all Israel stakeholders, especially the families, is also discussed. Furthermore, the key role of 6Faculty of Health Science, Institute of Physiotherapy, Jagiellonian University Medical functional outcome tools, specifically patient reported outcomes, in the continuous College, Krakow, Poland monitoring and evaluation of these deformities is addressed. Children with 7 Arthrogryposis Treatment Centre, University arthrogryposis present multiple problems that necessitate a multidisciplinary Children's Hospital, Krakow, Poland approach. Specific guidelines are necessary in order to inform patients, families, and Correspondence health care givers on the best approach to address these complex conditions Reggie C. -
Hip Dysplasia: Understanding a Very Misunderstood Puppy Abnormality
PET OWNER SERIES Congenital Hip Dysplasia: Understanding a very misunderstood puppy abnormality It is worth noting at the outset that all orthopedic conditions and post-operative recoveries are made worse by an obese or over-weight body condition. Since dogs come in all shapes and sizes, even within one breed, body weight is a difficult variable to guide. Body "condition" is easier to evaluate and recognize when "ideal". Also worth noting is that carrying excess fat tissue is not “bad” just because the animal is “heavy”, but probably more importantly because fat tissue is pro-inflammatory. It is an active, dynamic group of cells throughout the body that, when in excess, accelerates many degenerative processes leading to disease and injury. A lifetime-study of a large group of dogs demonstrated that lean dogs lived almost two years longer than their genetically similar overweight counterparts! The "ideal" body condition is leaner than you think. Very few dogs these days are ideal (65% are overweight or obese), so our frame of reference is skewed. To evaluate body condition, you use your eyes and hands. You should be able to feel the ribs, pelvic bones and shoulder bones easily, but not see them. You should be able to see (or feel in the fluffy dogs) a "waist" behind the ribs when viewed from the top. You should be able to see the belly tuck up behind the ribs when viewed from the side. Hip dysplasia is a common developmental problem in large breed dogs that is both hereditary and affected by nutrition, body weight and activity level. -
Cartilage Borderline
Prevalence of High-Grade Cartilage Defects in Patients With Borderline Dysplasia With Femoroacetabular Impingement: A Comparative Cohort Study Ioanna K. Bolia, M.D., M.S., Ph.D., Karen K. Briggs, M.P.H., Renato Locks, M.D., Jorge Chahla, M.D., Hajime Utsunomiya, M.D., Ph.D., and Marc J. Philippon, M.D. Purpose: To compare the prevalence, size, and location of Outerbridge grade III and IV cartilage defects on the femoral head and acetabulum between patients with borderline acetabular dysplasia and patients with non-borderline dysplasia who underwent hip arthroscopy for femoroacetabular impingement (FAI). Methods: Patients aged 18 years or older who underwent primary hip arthroscopy for correction of FAI and labral repair from November 2005 to April 2016 were included. We excluded patients with previous hip surgery, a radiographic hip joint space of 2 mm or less, and/or a lateral center-edge angle (LCEA) of less than 20 or greater than 40. The study patients were divided into 2 groups based on the LCEA on the anteroposterior pelvic radiograph: Patients with an LCEA between 20 and 25 were included in the borderline group, and patients with an LCEA between 25 and 40 were included in the non-borderline group. The prevalence, size, and location of Outerbridge grade III and IV chondral lesions on the femoral head and acetabulum were recorded intraoperatively. Comparisons between groups were performed with the Mann-Whitney U test for nonpara- metric testing and the t test for data that were normally distributed. Data were analyzed to calculate odds ratios associated with the various factors. -
The Orthopaedic Management of Arthrogryposis Multiplex Congenita
Current Concept Review The Orthopaedic Management of Arthrogryposis Multiplex Congenita Harold J. P. van Bosse, MD and Dan A. Zlotolow, MD Shriners Hospital for Children, Philadelphia, PA Abstract: Arthrogryposis multiplex congenita (AMC) describes a baby born with multiple joint contractures that results from fetal akinesia with at least 400 different causes. The most common forms of AMC are amyoplasia (classic ar- throgryposis) and the distal arthrogryposes. Over the past two decades, the orthopaedic treatment of children with AMC has evolved with a better appreciation of the natural history. Most adults with arthrogryposis are ambulatory, but less than half are fully independent in self-care and most are limited by upper extremity dysfunction. Chronic and epi- sodic pain in adulthood—particularly of the foot and back—is frequent, limiting both ambulation and standing. To improve upon the natural history, upper extremity treatments have advanced to improve elbow motion and wrist and thumb positioning. Attempts to improve the ambulatory ability and decrease future pain include correction of hip and knee contractures and emphasizing casting treatments of foot deformities. Pediatric patients with arthrogryposis re- quire a careful evaluation, with both a physical examination and an assessment of needs to direct their treatment. Fur- ther outcomes studies are needed to continue to refine procedures and define the appropriate candidates. Key Concepts: • Arthrogryposis multiplex congenita (AMC) is a term that describes a baby born with multiple joint contractures. Amyoplasia is the most common form of AMC, accounting for one-third to one-half of all cases, with the distal arthrogryposes as the second largest AMC type. -
PERIACETABULAR OSTEOTOMY (PAO) All Information Here Is General in Nature and Needs to Be Tailored to Your Circumstances
PERIACETABULAR OSTEOTOMY (PAO) All information here is general in nature and needs to be tailored to your circumstances Overview PAO surgery is a hip preservation surgery performed to correct a deformity in the acetabulum (hip socket) such as acetabular dysplasia. If this condition remains untreated, secondary arthritis commonly develops. Therefore, in order to relieve symptoms and improve the prognosis of the hip, this surgery is done to correct the bony anatomy and help normalize the load across the joint. “Periacetabular” means around the acetabulum (hip socket). “Osteotomy” means to cut bone. Therefore, periacetabular osteotomy means to cut the bone around the acetabulum and reposition the hip socket. The PAO is a very effective procedure for the treatment of symptomatic acetabular dysplasia. Mr Slattery is trained in a minimally invasive form of periacetabular osteotomy using a groin crease incision. An incision is made across the front of the hip joint to allow exposure of the hip and surrounding pelvis. Then specialised instruments are used with X-ray vision to perform controlled cuts of the pelvis and free the acetabulum from the pelvis. The acetabulum is repositioned and fixed in the new position with three or four screws after further checks with X-ray. This is a highly specialised procedure which is done by only a few surgeons worldwide. It was pioneered in Switzerland with Prof. Ganz, which is where Dr Slattery undertook sub-specialist fellowship training to learn the art of this procedure. A pelvic model is shown and demonstrates the bony cuts and repositioning of the acetabulum. The gaps between the repositioned bone fill in with new bone, just like the healing of a fracture. -
Spinopelvic Mobility As It Relates to Total Hip Arthroplasty Cup Positioning: a Case Report and Review of the Literature
REVIEW Spinopelvic Mobility as it Relates to Total Hip Arthroplasty Cup Positioning: A Case Report and Review of the Literature ABSTRACT Alexander M. Crawford, MD1 Hip-spine syndrome occurs when arthroses of the hip and spine coexist. Patrick K. Cronin, MD1 Hip-spine syndrome can result in abnormal spinopelvic mobility, which is Jeffrey K. Lange, MD2 becoming increasingly recognized as a cause of dislocation following total James D. Kang, MD3 hip arthroplasty (THA). The purpose of this article is to summarize the cur- rent understanding of normal and abnormal spinopelvic mobility as it re- lates to THA component positioning and to provide actionable recommen- dations to prevent spinopelvic mobility-related dislocations. In so doing, we also provide a recommended workup and case-example of a patient AUTHOR AFFILIATIONS with abnormal spinopelvic mobility. 1Harvard Combined Orthopaedic Residency Program, Harvard Medical LEVEL OF EVIDENCE Level V Narrative Review School, Boston, MA 2Department of Adult Reconstruction and Total Joint Arthroplasty, Brigham KEYWORDS Spinopelvic mobility, hip-spine syndrome, fixed sagittal plane and Women’s Hospital, Boston, MA imbalance, total hip arthroplasty 3Department of Orthopaedic Spine Surgery, Brigham and Women’s Hospital, Boston, MA Dislocation following total hip arthroplasty (THA) causes significant morbidity for pa- CORRESPONDING AUTHOR tients, and accounts for approximately 17% of all revision hip replacement surgeries.1 THA Alex Crawford, MD instability can have multiple causes, including component malposition, soft tissue imbal- Massachusetts General Hospital ance, impingement, and late wear.2 Acetabular component positioning has been one major Department of Orthopaedic Surgery consideration historically for optimizing construct stability. The classic ‘safe zone’ for cup 55 Fruit St, White 535 position described by Lewinneck et al.