CSU Wine Faults 1 of 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ing to Unpublished Data of Douglas and Vaughn.) Arena (1936)
THE pH REQUIREMENTS OF SOME HETEROFERMEN- TATIVE SPECIES OF LACTOBACILLUS JOHN C. M. FORNACHON,1 HOWARD C. DOUGLAS AND REESE H. VAUGHN Division of Fruit Products, University of California, Berkeley, California Received for publication May 6, 1940 I. INTRODUCTION The lactobacilli are noted for their ability to grow in acid media. Although media with reactions between pH 3.5 and 5.0 have been recommended for their isolation, the media used in physiological studies by Pederson (1929, 1938), Nelson and Werkman (1935, 1936), Weinstein and Rettger (1932) and others had values ranging from pH 6.2 to 7.0. Shimwell (1935) found the optimum pH for the growth of LactobaciUus pastorianus to be approximately 8.0. It has been observed however that species of Lactobacillus isolated from wines and other similar products thrive best when the medium is appreciably acid. Otani (1936) pointed out that homofermen- tative lactobacilli isolated from sake grew most vigorously be- tween pH 4.0 and 5.0 Fornachon (1936) found the optimum pH for the growth of a heterofermentative species of Lactobacillus isolated from Australian wine to be between pH 4.0 and 5.0. Douglas and McClung (1937) reported a bacterium from Califor- nia wine with an optimum pH between 4.1 and 4.3. (This organism is a heterofermentative species of LactobaciUus accord- ing to unpublished data of Douglas and Vaughn.) Arena (1936) described several lactic acid bacteria isolated from Argentinian wine and found the optimum pH for growth to vary between pH 4.3 and 6.7. 1 Research Officer, Australian Wine Board, Waite Agricultural Research In- stitute, University of Adelaide, South Australia. -
Domaine Luneau-Papin Muscadet from Domaine Luneau-Papin
Domaine Luneau-Papin Muscadet from Domaine Luneau-Papin. Pierre-Marie Luneau and Marie Chartier. Photo by Christophe Bornet. Pierre and Monique Luneau. Photo by Christophe Bornet. Profile Pierre-Marie Luneau heads this 50-hectare estate in Le Landreau, a village in the heart of Muscadet country, where small hamlets dot a landscape of vineyards on low hills. Their estate, also known as Domaine Pierre de la Grange, has been in existence since the early 18th century when it was already planted with Melon de Bourgogne, the Muscadet appellation's single varietal. After taking over from his father Pierre in 2011, Pierre-Marie became the ninth generation to make wine in the area. Muscadet is an area where, unfortunately, a lot of undistinguished bulk wine is produced. Because of the size of their estate, and of the privileged terroir of the villages of Le Landreau, Vallet and La Chapelle Heulin, the Luneau family has opted for producing smaller cuvées from their several plots, which are always vinified separately so as to reflect their terroir's particular character. The soil is mainly micaschist and gneiss, but some plots are a mix of silica, volcanic rocks and schist. The estate has a high proportion of old vines, 40 years old on average, up to 65 years of age. The harvest is done by hand -also a rarity in the region- to avoid any oxidation before pressing. There is an immediate light débourbage (separation of juice from gross lees), then a 4-week fermentation at 68 degrees, followed by 6 months of aging in stainless-steel vats on fine lees. -
A Taxonomic Note on the Genus Lactobacillus
Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept. -
Chardonnay Lees Management with Extralyse (ARC) Blenheim Vineyards Submitted by Kirsty Harmon Summary This Study Examined the Im
Chardonnay Lees Management with Extralyse (ARC) Blenheim Vineyards Submitted by Kirsty Harmon Summary This study examined the impact of lees stirring and batonnage enzyme addition during Chardonnay aging on the chemical and sensory qualities of the wine. It is a companion study to Blenheim’s Chardonnay Lees Management (2016), which compared the effects of not stirring Chardonnay to stirring Chardonnay. Chardonnay juice was fermented in barrels, and afterwards two different treatments were imposed: stirred, and stirred with Extralyse (Laffort). Stirring occurred once per week for 8 weeks. No major chemical differences could be observed between the finished wines. Wine tended to become more cold stable over time. Additionally, increased bentonite additions to become heat stable were necessary after aging. In general, people often could not distinguish between stirring and stirring with Extralyse. When people could distinguish, there appeared to be a slight preference for wine made with Extralyse. The descriptors used generally did not help elucidate which qualities in wine were affected by stirring. There may be a small tendency for Extralyse to enhance Fruit Intensity and Depth of Flavor, but these tendencies were weak. However, the stirring regime for this study was relatively short (8 weeks). In the future, more realistic stirring regimes should be implemented to see whether differences tend to increase over time. Introduction Marchal et al. (2011) provide an excellent brief review of yeast autolysis in their introduction. Lees are mainly composed of yeast, bacteria, tartaric acid, polysaccharides, and protein-tannin complexes (Zoecklein 2013). Heavy lees generally refers to lees which precipitate 24 hours after fermentation (generally grape particles and large complexes of other lees particulates), and can often lead to off- aromas in wine. -
Yeast Strains Recommended for Chardonnay Dynamics Fermentation Products Fermentation For
Yeast & Chardonnay Recommended Fermentation as primary Yeast Strains Recommended for Chardonnay Dynamics Fermentation Products fermentation for: ) 2 -tolerant 2 Manufacturer Vendor(s) Brand Strain Vigorous Ethanol-tolerant (>16%) Cold-tolerant (<10C) SO (up to 50 mg/lfSO Esters Glycerol Polysaccharides Mannoproteins Release Terpenes gucosidase(beta- activity) Degrade Malic Acid Barrel Ferment (sur lees) Style Malolactic style Fruit-forward style Restarting fermentation AB Mauri GW Kent, Maurivin AWRI 796 •• ••• Pacific Coast Chemicals AWRI R2 ••• • Cru-Blanc •• • • Elegance ••• Primeur •••• AEB Group American Tartaric Products Fermol® Associees ••• •• Blanc •• Chardonnay •••• Anchor Scott Laboratories Anchor VIN 13 •• •• Chr. Hansen Gusmer Enterprises Viniflora Symphony.nsac • DSM Gusmer Enterprises Collection Chardonnay •••• Cépage Fermicru LVCB •• •• Enartis Winetech LLC Challenge Vintage White •• • •• Aroma White • Laffort Scott Laboratories Actiflore C (F33) •• • • •• RMS2 •••• Zymaflore ST VL2 ••• Lallemand Vinquiry Enoferm ICV-D47 •••••• M05 • M1 •• M2 •• QA23 ••• Simi White • T306 • VQ11 ••• W46 •• Scott Laboratories, Vinquiry Lalvin EC1118 ••• •• ICV-K1 (V1116) ••• • •• BA11 •• CY3079 ICV-D254 •••••• S6U •••• ••• Lesaffre American Tartaric Products Bio-Springer BC S-103 (PdM)** • • • • • UCLM S-325 •• Red Star Côte de Blancs • (Epernay-2)** Red Star Champagne •• • • (UCD-595)*** Oenofrance Oenofrance Levuline C19 •• • • Vi-A-Dry Scott Laboratories Vi-A-Dry Montrachet (UCD-522)**** * Chart only includes yeast strains discussed in -
The Many Faces of Kefir Fermented Dairy Products
nutrients Review The Many Faces of Kefir Fermented Dairy Products: Quality Characteristics, Flavour Chemistry, Nutritional Value, Health Benefits, and Safety Mohamed A. Farag 1,2,*, Suzan A. Jomaa 2, Aida Abd El-Wahed 3,4 and Hesham R. El-Seedi 4,5,6,7,* 1 Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B., Cairo 11562, Egypt 2 Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt; [email protected] 3 Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt; [email protected] 4 Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden 5 Al-Rayan Research and Innovation Center, Al-Rayan Colleges, Medina 42541, Saudi Arabia 6 International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China 7 Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden * Correspondence: [email protected] or [email protected] (M.A.F.); [email protected] (H.R.E.-S.); Tel.: +20-011-202-2362245 (M.A.F.); +46-18-4714496 (H.R.E.-S.) Received: 22 November 2019; Accepted: 18 January 2020; Published: 28 January 2020 Abstract: Kefir is a dairy product that can be prepared from different milk types, such as goat, buffalo, sheep, camel, or cow via microbial fermentation (inoculating milk with kefir grains). As such, kefir contains various bacteria and yeasts which influence its chemical and sensory characteristics. A mixture of two kinds of milk promotes kefir sensory and rheological properties aside from improving its nutritional value. -
Effect of Phenolic Aldehydes and Flavonoids on Growth And
ARTICLE IN PRESS Effect of phenolic aldehydes and flavonoids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii Ana Rita Figueiredoa, Francisco Camposa,Vı´ctor de Freitasb, Tim Hogga, Jose´Anto´nio Coutoa,Ã aEscola Superior de Biotecnologia, Universidade Cato´lica Portuguesa, Rua Dr. Anto´nio Bernardino de Almeida, 4200-072 Porto, Portugal bFaculdade de Cieˆncias do Porto, Departamento de Quı´mica, Centro de Investigac-a˜o em Quı´mica, Rua do Campo Alegre 687, 4169-007 Porto, Portugal Keywords: Lactic acid bacteria; Phenolic aldehydes; Flavonoids; Tannins; Wine The aim of this work was to investigate the effect of wine phenolic aldehydes, flavonoids and tannins on growth and viability of strains of Oenococcus oeni and Lactobacillus hilgardii. Cultures were grown in ethanol-containing MRS/TJ medium supplemented with different concentrations of phenolic aldehydes or flavonoids and monitored spectrophotometrically. The effect of tannins was evaluated by monitoring the progressive inactivation of cells in ethanol-containing phosphate buffer supplemented with grape seed extracts with different molecular weight tannins. Of the phenolic aldehydes tested, sinapaldehyde, coniferaldehyde, p-hydroxybenzaldehyde, 3,4- dihydroxybenzaldehyde and 3,4,5-trihydroxybenzaldehyde significantly inhibited the growth of O. oeni VF, while vanillin and syringaldehyde had no effect at the concentrations tested. Lact. hilgardii 5 was only inhibited by sinapaldehyde and coniferaldehyde. Among the flavonoids, quercetin and kaempferol exerted an inhibitory effect especially on O. oeni VF. Myricetin and the flavan-3-ols studied (catechin and epicatechin) did not affect considerably the growth of both strains. Condensed tannins (particularly tetramers and pentamers) were found to strongly affect cell viability, especially in the case of O. -
Starting a Winery in Illinois: Profile and Business Plan Workbook
Starting a Winery in Illinois: Profile and Business Plan Workbook This Winery Business Plan Workbook was prepared by the Small Business Development Center at Southern Illinois University Carbondale in coordination with the Illinois Department of Commerce and Economic Opportunity’s Entrepreneurship Network Business Information Center. The following organizations and individuals made valuable contributions to the development of this publication: Susan M. Daily, C.P.A. Business Counselor Small Business Development Center Southern Illinois University, Carbondale Illinois Entrepreneurship Network (IEN)/Business Information Center Illinois Small Business Office Illinois Department of Commerce and Economic Opportunity Stephen Menke, Enology Specialist Food Science and Human Nutrition College of ACES (Agricultural, Consumer, and Environmental Science) University of Illinois, Urbana-Champaign Bonnie Cissell, Executive Director and Marketing Specialist Illinois Grape and Wine Resources Council Imed Dami, Viticulture Specialist Plant and Soil Science Department Alan Dillard Limestone Creek, Jonesboro, Illinois Kyle Harfst Rural Enterprise and Alternative Agriculture Development Initiative The Office of Economic and Regional Development Southern Illinois University, Carbondale, Illinois The Indiana Wine and Grape Council The Missouri Grape and Wine Program Updated 2008 by Bradley Beam University of Illinois Enology Specialist 1 TABLE OF CONTENTS INTRODUCTION ............................................................................................................................... -
Genome and Pangenome Analysis of Lactobacillus Hilgardii FLUB—A New Strain Isolated from Mead
International Journal of Molecular Sciences Article Genome and Pangenome Analysis of Lactobacillus hilgardii FLUB—A New Strain Isolated from Mead Klaudia Gustaw 1,* , Piotr Koper 2,* , Magdalena Polak-Berecka 1 , Kamila Rachwał 1, Katarzyna Skrzypczak 3 and Adam Wa´sko 1 1 Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; [email protected] (M.P.-B.); [email protected] (K.R.); [email protected] (A.W.) 2 Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland 3 Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; [email protected] * Correspondence: [email protected] (K.G.); [email protected] (P.K.) Abstract: The production of mead holds great value for the Polish liquor industry, which is why the bacterium that spoils mead has become an object of concern and scientific interest. This article describes, for the first time, Lactobacillus hilgardii FLUB newly isolated from mead, as a mead spoilage bacteria. Whole genome sequencing of L. hilgardii FLUB revealed a 3 Mbp chromosome and five plasmids, which is the largest reported genome of this species. An extensive phylogenetic analysis and digital DNA-DNA hybridization confirmed the membership of the strain in the L. hilgardii species. The genome of L. hilgardii FLUB encodes 3043 genes, 2871 of which are protein coding sequences, Citation: Gustaw, K.; Koper, P.; 79 code for RNA, and 93 are pseudogenes. -
Molecular Identification of Lactobacillus Hilgardii and Genetic Relatedness with Lactobacillus Brevis
International Journal of Systematic Bacteriology (1 999). 49, 1075-1 081 Printed in Great Britain Molecular identification of Lactobacillus hilgardii and genetic relatedness with Lactobacillus brevis Daniele Sohier, Joana Coulon and Aline Lonvaud-Funel Author for correspondence: Aline Lonvaud-Funel. Tel: +33 5 56 84 64 66. Fax: +33 5 56 84 64 68. e-mail : aline. lonvaud @ oenologie. u- bordeaux2.fr FacultC d'CEnologie-Unite Conventional phenotypic methods lead to misidentification of the lactic acid associCe INRA-U n iversite bacteria Lactobacillushilgardii and Lactobacillusbrevis. Random amplified Victor Segalen-Bordeaux 11, 351 Cows de la LibCration, polymorphic DNA (RAPD) and repetitive element PCR (REP-PCR) techniques 33405 Talence CCdex, were developed for a molecular study of these two species. The taxonomic France relationships were confirmed by analysis of the ribosomal operon. Amplified DNA fragments were chosen to isolate L. hilgardii-specific probes. In addition to rapid molecular methods for identification of L. hilgardii, these results convincingly proved that some strains first identified as L. brevis must be reclassified as L. hilgardii. The data clearly showed that these molecular methods are more efficient than phenotypic or biochemicalstudies for bacterial identification at the species level. I Keywords : Lactobacillus hilgardii, Lactobacillus brevis, RAPD, REP-PCR INTRODUCTION phenotypically close (Kandler & Weiss, 1986), they differ by their ability to ferment arabinose: L. brevis Lactic acid bacteria are responsible for malolactic can use this carbohydrate while L. hilgardii cannot. fermentation, an important step in winemaking et al., et al., In the present study, we intended to discriminate L. (Lafon-Lafourcade 1983; Renault 1988). hilgardii L. brevis However, some of them induce spoilage (Lonvaud- and by using molecular methods Funel & Joyeux, 1982; Lonvaud-Funel et al., 1990). -
Spoilage Microbes and Their Detection: What Is New and What Has Changed ?, P.1
EDWARDS, SPOILAGE MICROBES AND THEIR DETECTION: WHAT IS NEW AND WHAT HAS CHANGED ?, P.1 SPOILAGE MICROBES AND THEIR DETECTION: WHAT IS NEW AND WHAT HAS CHANGED? Dr. Charles G. EDWARDS Food Scientist (Enology)/Professor, Department of Food Science and Human Nutrition, Program in Viticulture and Enology, Washington State University, Pullman, WA, USA Seminar presented at Enoforum 2007, March 13th -15th, Piacenza, Italy Introduction Some believe that the incidence of spoilage microorganisms in wines has increased in recent years. Though not all winemakers agree with this speculation, two issues of potential importance are increases in must pH and a wider application of improved detection methods. Winemakers have experimented with delaying fruit harvest as a means to favorably alter flavor and tannin profiles. In many cases, wine quality has improved. However, one consequence of this practice is that grapes frequently suffer from higher pH, a condition favorable to the growth of various microorganisms (Davis et al., 1986a). The pH of musts also influences the effectiveness of SO2 with less amounts of the antimicrobial portion (molecular) present at higher pH. As such, some have suggested that the increased “hang-time” prior to harvest can also adversely impact wine quality by encouraging the potential for microbial spoilage. Another issue has been application of improved methods to detect microorganisms in musts and wines. Perhaps the most important are the so-called “real-time” molecular techniques. Based upon determination of similarities at the gene level, these methods are being used to identify and, in some cases, quantify microbiological populations. While these methods offer tremendous opportunities to improve microbiological control during vinification, there are potential limitations to routinely using these methods in wine analysis. -
Yeast Autolysis* by Dr
Yeast Autolysis* By Dr. Murli Dharmadhikari The term autolysis literally means 'self-destruction'. It represents self-degradation of the cellular constituents of a cell by its own enzymes following the death of the cell. In the process of autolysis, the medium (wine) is enriched by the compounds released as a result of the degradation of intracellular constituents. These yeast constituents have an important influence on the sensory properties and biological stability of wine. Yeast autolysis is very important to the food industry. Yeast extract is used as an additive in the production of meat paste, meat pie filling, soups, sauces, and snacks. Yeast autolysate is a good source of nutrients such as proteins, vitamins, fiber, and micronutrients. It is also used to enhance the color and flavor of food products. The process (autolysis) is of great value to biochemical researchers, since it is used in the extraction and purification of enzymes and coenzymes. In the wine industry, yeast autolysis is important in the production of sparkling wines, sherry, and white wines produced with prolonged yeast contact, such as the "sur lie" method. The process of autolysis The process of autolysis begins with the death of the cell. At first, disorganization of membranous systems (cytoplasmic membrane and other organelles) of the cell occurs. This permits the enzymes to come in contact with cellular constituents which are degraded and rendered soluble. The proteolytic enzyme, protease, attacks proteins and breaks them down into smaller constituent units, such as peptides and amino acids. Likewise, enzyme nuclease degrades RNA and DNA yielding compounds such as nucleosides, mononucleotides, and polynucleotides.