Fact Sheet: How Is Human Activity Impacting the Great Barrier Reef

Total Page:16

File Type:pdf, Size:1020Kb

Fact Sheet: How Is Human Activity Impacting the Great Barrier Reef FACT SHEET HOW IS HUMAN ACTIVITY IMPACTING THE GREAT BARRIER REEF The Great Barrier Reef is so big it is visible from space. This collection of more than 3,000 individual vibrantly-coloured coral reefs is larger in area than Italy and is considered the planet’s largest living structure and one of the seven wonders of the natural world. The Reef was designated a World Heritage Area in 1981 due to its status as one of the richest and most complex ecosystems on Earth. It is home to thousands of species, including 1,625 different fish, 133 sharks and rays, 242 birds and many varieties of whale, dolphin, sea turtle, dugong, crocodile and sea snake. The Reef is also a key economic asset, generating around $A6.4 billion a year and providing livelihoods to approximately 69,000 people, mainly from tourism. Under threat © WWF-AUSTRALIA Human activity has in recent years led to the loss of large sections of Reef and raised serious questions about the strength of its biodiversity and its long-term future. Historically, tropical cyclones and poor water quality that cause outbreaks of crown of thorns starfish (which eat coral) have been the major causes of coral loss. In the past two years, successive coral bleaching events caused by underwater heatwaves due to climate change, have caused massive coral loss throughout the Reef World Heritage Area. A coal export facility in Gladstone, QLD Meanwhile, sediment reaching the Reef has increased up to 10 times in some areas in the last 150 years, mostly due to grazing TRAPNELL © WWF-AUS / KERRY and cropping expansion. Such run-off is regarded as the second most significant pressure on the Reef. High levels of nitrogen can generate outbreaks of crown of thorns starfish, with excess nutrients also making corals prone to disease and promoting unwanted seaweed growth. Parts of the Reef where commercial fishing is allowed have been depleted of predatory fish such as coral trout and snapper, allowing smaller fish to thrive, which has altered the balance and structure of the coral reef ecosystem. Sediment from grazing and cropping expansion puts pressure on the Reef © WWF-AUS / IAN MCCONNELF HOW IS HUMAN ACTIVITY IMPACTING THE GREAT BARRIER REEF Outcomes © BIOPIXEL The impacts of these challenges have been devastating. In 2016, some 22% of the Reef’s corals died during the worst ever mass bleaching event. A second consecutive mass bleaching occurred in 2017. Initial research indicates that 50% of the Reef’s coral may have died as a result of these two events. The loss of corals destroys habitats and disrupts the food chain. Despite attempts at conserving endangered species, populations of dugongs, sharks, seabirds, marine turtles, sawfish and snubfin dolphins have declined. In 2015, the United Nations reported: “the overall outlook for Coral bleaching on the Great Barrier Reef the Great Barrier Reef is ‘poor, has worsened since 2009 and is expected to further deteriorate’ ”. What WWF is doing? © ADAM OSWELL / WWF ADAM OSWELL © It is not too late to secure the future of our beautiful Great Barrier Reef, but only if we dramatically reduce carbon dioxide emissions and rapidly shift to renewable energy such as solar and wind. This window to save our Reef is closing and governments and industries need to act fast. WWF supports conservation science, campaigns for improved climate change policies, and urges countries globally to embrace a future powered by renewable energy. To improve water quality, WWF is dedicated to establishing The shift to renewable energy such as solar and wind is critical for saving a fund to repair Great Barrier Reef catchments, advocating for the Reef laws to reduce pollution and improve the health of the Reef’s catchments, and assisting farmers to adopt cleaner practices. Published August 2017.
Recommended publications
  • 7 Day Gbr Itinerary
    7 DAY & 7 NIGHT GREAT BARRIER REEF ITINERARY PORT DOUGLAS | GREAT BARRIER REEF | COOKTOWN | LIZARD ISLAND PORT DOUGLAS Port Douglas is a town on the Coral Sea in the tropical far north of Queensland, Australia. Located a scenic 50 minute drive north of Cairns International airport, It's known for its luxury beach resorts and as a base for visits to both the Great Barrier Reef, the world's largest reef system, and Daintree National Park, home to biodiverse rainforest. In town, Macrossan Street is lined with boutique shops and restaurants. Curving south is popular Four Mile Beach. THE RIBBON REEFS - GREAT BARRIER REEF - Characteristically no wider than 450m, the Ribbon Reefs are part of the Great Barrier Reef Marina Park and are covered in colorful corals that attract a plethora of reef life big and small, with sandy gullies separating them, themselves containing interesting critters. The Ribbons reef host several of Australia’s most spectacular dive sites, as well as arguably the most prolific Black Marlin fishing in the world at certain times of year -with general fishing topping the list also. LIZARD ISLAND Lizard Island hosts Australia’s northernmost island resort. It is located 150 miles north of Cairns and 57 miles north east off the coast from Cooktown. Lizard Island is an absolute tropical paradise, a haven of isolation, gratification and relaxation. Accessible by boat and small aircraft, this tropical haven is a bucket list destination. Prominent dives spots on the Ribbon Reefs are generally quite shallow, with bommies coming up to as high as 5 metres below the surface from a sandy bottom that is between 15-20 metres below the surface.
    [Show full text]
  • What Is Coral Bleaching
    Mote Marine Laboratory / Florida Keys National Marine Sanctuary Coral Bleaching Early Warning Network Current Conditions Report #20180727 Updated July 27, 2018 Summary: Based on climate predictions, current conditions, and field observations, the threat for mass coral bleaching within the FKNMS is currently MODERATE. NOAA Coral Reef Watch Current and 60% Probability Coral Bleaching Alert Outlook July 25, 2018 (experimental) June 30, 2015 (experimental) Figure 2. NOAA’s Experimental 5km Coral Bleaching HotSpot Map for Florida July 25, 2018. coralreefwatch.noaa.gov/vs/gauges/florida_keys.php Figure 1. NOAA’s 5 km Experimental Current and 60% Probability Coral Bleaching Alert Outlook Areas through October, 2018. Updated July 25, 2018. coralreefwatch.noaa.gov/vs/gauges/florida_keys.php Weather and Sea Temperatures According to the newly released NOAA Coral Reef Watch (CRW) experimental 5 kilometer (km) Satellite Current and 60% Probability Coral Bleaching Alert Area, most areas of the Florida Keys National Marine Sanctuary are under a bleaching Warning or Alert Level 1, which means bleaching is likely and potential for more bleaching warnings and alerts if sea Figure 3. NOAA’s Experimental 5km Degree Heating temperatures continue to increase in the next few weeks (Fig. 1). Weeks Map for Florida July 25, 2018. coralreefwatch.noaa.gov/vs/gauges/florida_keys.php Recent remote sensing analysis by NOAA’s CRW program indicates that most of the Florida Keys region is currently experiencing thermal stress. NOAA’s 35 new experimental 5 km Coral Bleaching HotSpot Map (Fig. 2), which 30 illustrates current sea surface temperatures compared to the average temperature for the warmest month, shows elevated temperatures for the 25 Florida Keys.
    [Show full text]
  • Coral Reef Education and Australian High School Students
    CORAL REEF EDUCATION AND AUSTRALIAN HIGH SCHOOL STUDENTS by Carl M. Stepath, MEd PhD Candidate: School of Education, and School of Tropical Environment Studies & Geography; James Cook University, Cairns, Qld 4878, Australia, [email protected] In proceedings of the Marine Education Society of Australasia 2004 Conference, Noosa, Queensland, October 2-3, 2004. Keywords: tropical marine education, environmental and marine experiential education, environmental awareness and attitudes, ecological agency, coral reef education Abstract: This paper reports on a PhD research project investigating marine education in coral reef environments along the Queensland coast. The study explored relationships between awareness, attitudes and ecological skills of high school students who were trained in coral reef ecology and monitoring in offshore sites along the Great Barrier Reef in 2002 and 2003. The research investigated the question of whether experiential marine education can change the reported environmental knowledge, attitudes and ecological agency of student participants. Some key data outcomes are presented and implications for effective marine education strategies discussed. Introduction Educational programs that focus on humans and their relationship to coral reefs are becoming necessary, as reef structures along the Queensland coast come under mounting ecological pressure (GBRMPA, 2003; Hughes et al., 2003; Talbot, 1995). Marine education has been defined by Roseanne Fortner (1991) as that part of the total educational process that enables people to develop sensitivity to and a general understanding of the role of the seas in human affairs and the impact of society on the marine and aquatic environments. Improving pedagogical techniques concerning aquatic environments is valuable since continuing intensification of human activity near coastline areas adversely affects marine and coastal ecosystems worldwide (NOAA, 1998).
    [Show full text]
  • Great Barrier Reef Marine Park Authority Technical Memorandun Gbrmpa - Tm-5
    GREAT BARRIER REEF MARINE PARK AUTHORITY TECHNICAL MEMORANDUN GBRMPA - TM-5 REPORT OF SCIENTIFIC DISCUSSION MEETING ON THE PHYSICAL OCEANOGRAPHYOF THE GREAT BARRIER REEF REGION Held at the University of New South Wales 5-6 July 1982 with support from the Great Barrier Reef Marine Park Authority and the Australian Academy of Science i. _. JASON H. MIDDLETON SUMMARY A scientific discussion meeting was held in July 1982 to generate a statement concerning the physical oceanography of the Great Barrier Reef region. The statement was to be framed by answering the questions below: .. (a) What is the present state of knowledge? (b) What appear to be the most important unanswered questions? (c) With regard to (a) and (b), what methods would be‘mogt effective in answering the questions posed in (b)? (d) What routine monitoring measurements would appear to be of most scientific value in increasing our knowledge of the region? This report summarises the discussions of the meeting. Technical Memoranda are of a preliminary nature, representing the views of the author and do not necessarily represent the views of the Great Barrier Reef Marine Park Authority. Postal Address: The Chairman, Great Barrier Reef Marine Park Authority, P.O. Box 1379, TOWNSVILLE. QLD. 4810 -l- 1. SUMMARYOF IMPORTANT SCIENTIFIC QUESTIONS The meeting identified a number of important scientific questions. These were of two types: (i) What is the description of certain events? and (ii) Which model is needed to predict these events. Considering events in decreasing time scale, the following . I statements summarize the important questions addressed in the body of the report.
    [Show full text]
  • Cairns Outer Great Barrier Reef
    CAIRNS OUTER GREAT BARRIER REEF Cairns fastest, most spacious and luxurious vessel From $165 + $20 LEVY Full Day Reef Cruise Unlimited Snorkelling and up to three Certified Dives! Adventure awaits on board the fastest, award-winning Adult Child Family $ $ $ luxury vessel EVOLUTION, the best value tour to the 185 95 485 Outer Great Barrier Reef in Cairns. TOUR INCLUDES *INCLUDES $20 LEVY PAYABLE ON BOARD TWO OUTER REEF SITES FASTEST REEF VESSEL SNORKEL HIRE HOT BBQ CHEESE & FRUIT PLATTER, WINE FIVE HOURS REEF TIME BUFFET LUNCH LIVE ENTERTAINMENT EXPERIENCED DIVE MODERN AIR SPACIOUS SUN DECKS INSTRUCTORS CONDITIONED BOAT FOR SUNBATHING DEPARTS CAIRNS REEF FLEET TERMINAL DAILY RETURN TRANSFERS DAILY FROM CAIRNS CBD ($17) CHECK IN 7:15am DEPARTS 8:15am RETURNS 4:30pm. AND NORTHERN BEACHES ($24). CAPE TRIBULATION Agincourt Reef C o nti n e Two Outerntal Reef Sites Undine Reef S St Crispin Reef h e Locations selected for lfclarity of water Opal Reef Rudder Reef & abundance of Marine Life Tongue Reef PORT DOUGLAS Norman Reef Saxon Reef Batt Reef Hastings Reef Pixie Reef Breaking Patches Michaelmas Cay Oyster Reef Vlasoff Cay Upolo Cay Double PALM COVE Island Green Island Arlington Reef KURANDA Moore Reef Skyrail Kuranda Scenic Rail CAIRNS Fitzroy Island MAP NOT TO SCALE Extras Prebooked Only Only $50 $10 $25 INTRO & CERTIFIED DIVES SEMI-SUBMERSIBLE TOURS MARINE BIOLOGY TOURS Scuba Dive without any previous experience, or Enjoy the spectacular coral formations without Learn the secrets of the reef from our Marine use your Scuba Certification to explore the Great getting wet on our semi submersible tour with Biologist and then explore the coral gardens Barrier Reef.
    [Show full text]
  • Highly Variable Taxa-Specific Coral Bleaching Responses to Thermal
    Vol. 648: 135–151, 2020 MARINE ECOLOGY PROGRESS SERIES Published August 27 https://doi.org/10.3354/meps13402 Mar Ecol Prog Ser OPEN ACCESS Highly variable taxa-specific coral bleaching responses to thermal stresses Timothy R. McClanahan1,*, Emily S. Darling1,2, Joseph M. Maina3, Nyawira A. Muthiga1, Stephanie D’agata1,3, Julien Leblond1, Rohan Arthur4,5, Stacy D. Jupiter1,6, Shaun K. Wilson7,8, Sangeeta Mangubhai1,6, Ali M. Ussi9, Mireille M. M. Guillaume10,11, Austin T. Humphries12,13, Vardhan Patankar14,15, George Shedrawi16,17, Julius Pagu18, Gabriel Grimsditch19 1Wildlife Conservation Society, Marine Program, Bronx, NY 10460, USA 2Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada 3Faculty of Science and Engineering, Department of Earth and Environmental Science, Macquarie University, Sydney, NSW 2109, Australia 4Nature Conservation Foundation, Amritha 1311, 12th Main, Vijaynagar 1st Stage Mysore 570017, India 5Center for Advanced Studies (CEAB), C. d’Acces Cala Sant Francesc, 14, 17300 Blanes, Spain 6Wildlife Conservation Society, Melanesia Program, 11 Ma’afu Street, Suva, Fiji 7Marine Science Program, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6101, Australia 8Oceans Institute, University of Western Australia, Crawley, WA 6009, Australia 9Department of Natural Sciences, The State University of Zanzibar, Zanzibar, Tanzania 10Muséum National d’Histoire Naturelle, Aviv, Laboratoire BOREA MNHN-SU-UCN-UA-CNRS-IRD EcoFunc, 75005 Paris, France 11Laboratoire d’Excellence
    [Show full text]
  • THE SOLUBILITY of GASES in LIQUIDS Introductory Information C
    THE SOLUBILITY OF GASES IN LIQUIDS Introductory Information C. L. Young, R. Battino, and H. L. Clever INTRODUCTION The Solubility Data Project aims to make a comprehensive search of the literature for data on the solubility of gases, liquids and solids in liquids. Data of suitable accuracy are compiled into data sheets set out in a uniform format. The data for each system are evaluated and where data of sufficient accuracy are available values are recommended and in some cases a smoothing equation is given to represent the variation of solubility with pressure and/or temperature. A text giving an evaluation and recommended values and the compiled data sheets are published on consecutive pages. The following paper by E. Wilhelm gives a rigorous thermodynamic treatment on the solubility of gases in liquids. DEFINITION OF GAS SOLUBILITY The distinction between vapor-liquid equilibria and the solubility of gases in liquids is arbitrary. It is generally accepted that the equilibrium set up at 300K between a typical gas such as argon and a liquid such as water is gas-liquid solubility whereas the equilibrium set up between hexane and cyclohexane at 350K is an example of vapor-liquid equilibrium. However, the distinction between gas-liquid solubility and vapor-liquid equilibrium is often not so clear. The equilibria set up between methane and propane above the critical temperature of methane and below the criti­ cal temperature of propane may be classed as vapor-liquid equilibrium or as gas-liquid solubility depending on the particular range of pressure considered and the particular worker concerned.
    [Show full text]
  • Pressure Diffusion Waves in Porous Media
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Pressure diffusion waves in porous media Permalink https://escholarship.org/uc/item/5bh9f6c4 Authors Silin, Dmitry Korneev, Valeri Goloshubin, Gennady Publication Date 2003-04-08 eScholarship.org Powered by the California Digital Library University of California Pressure diffusion waves in porous media Dmitry Silin* and Valeri Korneev, Lawrence Berkeley National Laboratory, Gennady Goloshubin, University of Houston Summary elastic porous medium. Such a model results in a parabolic pressure diffusion equation. Its validity has been Pressure diffusion wave in porous rocks are under confirmed and “canonized”, for instance, in transient consideration. The pressure diffusion mechanism can pressure well test analysis, where it is used as the main tool provide an explanation of the high attenuation of low- since 1930th, see e.g. Earlougher (1977) and Barenblatt et. frequency signals in fluid-saturated rocks. Both single and al., (1990). The basic assumptions of this model make it dual porosity models are considered. In either case, the applicable specifically in the low-frequency range of attenuation coefficient is a function of the frequency. pressure fluctuations. Introduction Theories describing wave propagation in fluid-bearing porous media are usually derived from Biot’s theory of poroelasticity (Biot 1956ab, 1962). However, the observed high attenuation of low-frequency waves (Goloshubin and Korneev, 2000) is not well predicted by this theory. One of possible reasons for difficulties in detecting Biot waves in real rocks is in the limitations imposed by the assumptions underlying Biot’s equations. Biot (1956ab, 1962) derived his main equations characterizing the mechanical motion of elastic porous fluid-saturated rock from the Hamiltonian Principle of Least Action.
    [Show full text]
  • PRESS RELEASE –Embargoed Until February 13, 2020 Cancun, Mexico * Belize City, Belize * Guatemala City, Guatemala * Tegucigalpa, Honduras
    Melanie McField Director-Healthy Reefs Initiative /Smithsonian Institution Cell: (754) 610 9311, [email protected], Skype: melaniemcfield -------------------------------------------------------------- PRESS RELEASE –embargoed until February 13, 2020 Cancun, Mexico * Belize City, Belize * Guatemala City, Guatemala * Tegucigalpa, Honduras CARIBBEAN’S LARGEST BARRIER CORAL REEF SYSTEM FACES NEW THREATS, BUT ALSO TESTS NEW SOLUTIONS (Mesoamerican Reef – February 13th, 2020) -- The Healthy Reefs for Healthy People Initiative (HRI) today released its 2020 Mesoamerican Reef Health Report Card. For the first time in 12 years of tracking the health of the largest barrier reef in the Western Hemisphere, the overall condition of this vital ecosystem has deteriorated. The Reef Health Index (RHI), which synthesizes ecological data into a “Dow Jones” style index, decreased from 2.8 in 2016 to 2.5 in 2018. Despite the recent decline, reef health still shows improvement compared to 2006 when the HRI monitoring efforts began. A similar report released last summer for Australia’s Great Barrier Reef also marked a dramatic reduction in reef condition, signaling a worrisome outlook for two of the world’s most important reef systems in different hemispheres of the globe. ”Over the past decade we have documented a slow but positive recovery of the Mesoamerican Barrier Reef System,” according to Dr. Melanie McField, Director of the Healthy Reefs Initiative and marine scientist with the Smithsonian Institution, “but this recent decline highlights the need to step up local actions to improve water quality and increase fish populations and accelerate international commitments to reduce carbon emissions in order to halt climate change impacts on reefs.” The report is based on a new study of 286 coral reef sites along 1000 km of the Caribbean coasts of Mexico, Belize, Guatemala, and Honduras.
    [Show full text]
  • Protection of Coral Reefs and Related Ecosystems for Sustainable Livelihoods and Development – Australian Submission
    Secretary-General’s report: Protection of coral reefs and related ecosystems for sustainable livelihoods and development – Australian submission The United Nations General Assembly (UNGA) Resolution 65/150 “Protection of coral reefs for sustainable livelihoods and development” was initiated by Australia working in close partnership with Pacific countries that may be directly affected by the health of coral reefs and related ecosystems. It was adopted by consensus in the UNGA on 25 November 2010, with co-sponsors comprising 84 States from the Pacific, Caribbean, Africa, the Americas, Asia and Europe. The resolution called for urgent action for the protection of coral reefs and related ecosystems. It also requested the United Nations (UN) Secretary-General to prepare a report on the issue. Australia considers this report as a timely opportunity to highlight the social, economic and environmental benefits of protecting coral reefs and related ecosystems and the urgent need for action to address the alarming trend in threats to the world’s coral reefs and related ecosystems. The United Nations Conference on Sustainable Development (the Rio+20 Conference) will be an important opportunity to secure a strong global outcome for coral reefs and related ecosystems, and recognition of their critical role for securing sustainable livelihoods and development, particularly in small island developing countries. A strong outcome for coral reefs and related ecosystems must be a global response. The main threats to coral reefs and related ecosystems include climate change, catchment runoff, coastal development and under-regulated fishing. For further details see Attachment A . The extent and persistence of damage to coral reef ecosystems will depend on change in the world’s climate and on the resilience of coral reef ecosystems.
    [Show full text]
  • What Is High Blood Pressure?
    ANSWERS Lifestyle + Risk Reduction by heart High Blood Pressure BLOOD PRESSURE SYSTOLIC mm Hg DIASTOLIC mm Hg What is CATEGORY (upper number) (lower number) High Blood NORMAL LESS THAN 120 and LESS THAN 80 ELEVATED 120-129 and LESS THAN 80 Pressure? HIGH BLOOD PRESSURE 130-139 or 80-89 (HYPERTENSION) Blood pressure is the force of blood STAGE 1 pushing against blood vessel walls. It’s measured in millimeters of HIGH BLOOD PRESSURE 140 OR HIGHER or 90 OR HIGHER mercury (mm Hg). (HYPERTENSION) STAGE 2 High blood pressure (HBP) means HYPERTENSIVE the pressure in your arteries is higher CRISIS HIGHER THAN 180 and/ HIGHER THAN 120 than it should be. Another name for (consult your doctor or immediately) high blood pressure is hypertension. Blood pressure is written as two numbers, such as 112/78 mm Hg. The top, or larger, number (called Am I at higher risk of developing HBP? systolic pressure) is the pressure when the heart There are risk factors that increase your chances of developing HBP. Some you can control, and some you can’t. beats. The bottom, or smaller, number (called diastolic pressure) is the pressure when the heart Those that can be controlled are: rests between beats. • Cigarette smoking and exposure to secondhand smoke • Diabetes Normal blood pressure is below 120/80 mm Hg. • Being obese or overweight If you’re an adult and your systolic pressure is 120 to • High cholesterol 129, and your diastolic pressure is less than 80, you have elevated blood pressure. High blood pressure • Unhealthy diet (high in sodium, low in potassium, and drinking too much alcohol) is a systolic pressure of 130 or higher,or a diastolic pressure of 80 or higher, that stays high over time.
    [Show full text]
  • THE SOLUBILITY of GASES in LIQUIDS INTRODUCTION the Solubility Data Project Aims to Make a Comprehensive Search of the Lit- Erat
    THE SOLUBILITY OF GASES IN LIQUIDS R. Battino, H. L. Clever and C. L. Young INTRODUCTION The Solubility Data Project aims to make a comprehensive search of the lit­ erature for data on the solubility of gases, liquids and solids in liquids. Data of suitable accuracy are compiled into data sheets set out in a uni­ form format. The data for each system are evaluated and where data of suf­ ficient accuracy are available values recommended and in some cases a smoothing equation suggested to represent the variation of solubility with pressure and/or temperature. A text giving an evaluation and recommended values and the compiled data sheets are pUblished on consecutive pages. DEFINITION OF GAS SOLUBILITY The distinction between vapor-liquid equilibria and the solUbility of gases in liquids is arbitrary. It is generally accepted that the equilibrium set up at 300K between a typical gas such as argon and a liquid such as water is gas liquid solubility whereas the equilibrium set up between hexane and cyclohexane at 350K is an example of vapor-liquid equilibrium. However, the distinction between gas-liquid solUbility and vapor-liquid equilibrium is often not so clear. The equilibria set up between methane and propane above the critical temperature of methane and below the critical temperature of propane may be classed as vapor-liquid equilibrium or as gas-liquid solu­ bility depending on the particular range of pressure considered and the par­ ticular worker concerned. The difficulty partly stems from our inability to rigorously distinguish between a gas, a vapor, and a liquid, which has been discussed in numerous textbooks.
    [Show full text]