Adjustment of Wind Waves to Sudden Changes of Wind Speed

Total Page:16

File Type:pdf, Size:1020Kb

Adjustment of Wind Waves to Sudden Changes of Wind Speed Journal of Oceanography, Vol. 57, pp. 519 to 533, 2001 Adjustment of Wind Waves to Sudden Changes of Wind Speed 1 2 3 TAKUJI WASEDA *, YOSHIAKI TOBA and MARSHALL P. T ULIN 1Frontier Research System for Global Change and International Pacific Research Center, University of Hawaii, HI 96822, U.S.A. 2Earth Observation Research Center, National Space Development Agency of Japan, Tokyo 104-6023, Japan; and Japan Marine Science and Technology Center, Yokosuka 237-0061, Japan 3Ocean Engineering Laboratory, University of California, Santa Barbara, CA 93106, U.S.A. (Received 4 August 2000; in revised form 22 January 2001; accepted 15 March 2001) An experiment was conducted in a small wind-wave facility at the Ocean Engineering Keywords: Laboratory, California, to address the following question: when the wind speed ⋅ Wind waves, changes rapidly, how quickly and in what manner do the short wind waves respond? ⋅ local equilibrium, ⋅ To answer this question we have produced a very rapid change in wind speed between fetch, –1 –1 ⋅ wind gust. Ulow (4.6 m s ) and Uhigh (7.1 m s ). Water surface elevation and air turbulence were monitored up to a fetch of 5.5 m. The cycle of increasing and decreasing wind speed was repeated 20 times to assure statistical accuracy in the measurement by taking an ensemble mean. In this way, we were able to study in detail the processes by which the young laboratory wind waves adjust to wind speed perturbations. We found that the wind-wave response occurs over two time scales determined by local equilibrium ad- ∆ ∆ justment and fetch adjustment, t1/T = O(10) and t2/T = O(100), respectively, in the current tank. The steady state is characterized by a constant non-dimensional wave height (H/gT2 or equivalently, the wave steepness for linear gravity waves) depending on wind speed. This equilibrium state was found in our non-steady experiments to apply at all fetches, even during the long transition to steady state, but only after a ∆ short initial relaxation t1/T of O(10) following a sudden change in wind speed. The ∆ complete transition to the new steady state takes much longer, t2/T of O(100) at the largest fetch, during which time energy propagates over the entire fetch along the rays (dx/dt = cg) and grows under the influence of wind pumping. At the same time, frequency downshifts. Although the current study is limited in scale variations, we believe that the suggestion that the two adjustment time scales are related to local equilibrium adjustment and fetch adjustment is also applicable to the ocean. 1. Introduction et al. (1987)). When such formulae are applicable, sea Sea states are typically characterized by two param- states offshore of straight coastlines can be uniquely de- eters: significant wave height, Hs, and significant wave scribed as a function of fetch and wind speed in non-di- period, Ts. For a young sea, these parameters vary in space mensional form. and time, even in the presence of uniform wind. In the In this uniform wind case, wind waves grow with uniform wind case, however, empirical evolution laws distance offshore, following the fetch law, eventually describe the variation of Hs (or total energy, ET) and Ts reaching an equilibrium state where growth ceases. How- σ (or frequency, s) in space (fetch limited) or time (dura- ever, even while growing, wind waves have been per- tion limited). Wilson’s (1965) fetch formula is an early ceived to be in a local equilibrium with the wind (Toba, example (see also Kahma and Calkoen (1992) and Battjes 1972; Masuda and Kusaba, 1987), since a single empiri- cal relationship between Hs and Ts exists everywhere: the 2 ∝ 3 so-called 3/2 power law, wherein Hs gu*Ts , where g * Corresponding author. E-mail: [email protected] is the acceleration of gravity, and u* is the air friction Copyright © The Oceanographic Society of Japan. velocity. Leaving the detailed discussion for the main text, 519 we simply state at this point that this 3/2 law does not quasi-equilibrium, even following discrete changes in hold for sufficiently short wind waves. We have found wind speed, seems to be of great significance for these here that the proportionality H ∝ gT2 represents the short short wind waves and likely is significant in the response wind-wave state better, in accordance with the earlier of short waves to perturbations other than by the wind, experimental observations made by Kunishi (1963) and such as internal wave effects. Moreover, the consequence Mitsuyasu and Rikiishi (1978) and the theoretical of this adjustment process for remote sensing seems ob- modeling of Phillips (1958). vious. The 3/2 law ceases to be observed even for energetic Section 2 describes the experimental facility and in- waves in the ocean when the wind speed changes suffi- strumentation, the gust experimental procedure and analy- ciently quickly, and the actual process by which wind sis techniques; Section 3 discusses steady state wind waves adjust to changing wind fields and stress has been waves that are relevant for understanding the adjustment previously studied using ocean data by Toba et al. (1988) processes in a short tank. The results of the gust experi- and Toba and Ebuchi (1991). The equilibrium range spec- ment from fetches 5.5 m, 4.7 m, 3.9 m and 3.1 m are pre- tral level has been observed by Toba et al. (1988) to de- sented in Section 4. Detailed analyses of the results re- crease for rising wind conditions and vice versa during a veal various interesting phenomena resulting from short time scale. Hanson and Phillips (1999) also depicted changes in wind speed, and an interpretation of the re- the trend of increasing energy with decreasing wind ac- sponses based on further analysis of the data is presented. celeration and vice versa at a given wave age, in agree- Further discussion of local equilibrium is given in Sec- ment with Toba et al. (1988). Young et al. (1987) used tion 5. wave models to study the responses of wind-wave spec- trum to sudden shifts of wind direction restricted to a 2. Experiments duration-limited growth of a homogeneous wave field. Komen et al. (1994) summarizes recent work on the modi- 2.1 Facility and instrumentation fication of the wind-wave growth due to stochastic wind Experiments were conducted in a small-scale wind- forcing. In the laboratory, Wu (1975a) studied the effect wave facility at the Ocean Engineering Laboratory of the of pulsating wind on the wind profile and the microstruc- University of California, Santa Barbara. The small wind- ture of the water surface. The growth of wind waves in wave tank is 7.0 m long, 30 cm wide, 15 cm deep, with a the duration-limited case was studied by Mitsuyasu and 15-cm air passage height; wind speeds are variable be- Rikiishi (1978) by abruptly starting the wind over a wa- tween 3 and 8 m s–1 (Fig. 1). Wave wires of diameter 0.1 ter surface. In order to study this wind-wave adjustment mm were located at seven test sections along the tank; process in more detail in unsteady winds, we have con- 0.4, 1.7, 2.4, 3.1, 3.9, 4.7, and 5.5 m fetches. The sensi- ducted an experiment in a small laboratory wind-wave tivity of the wave wires was about 50 µm, with a dynamic –1 tank, changing wind speeds from Ulow = 4.6 m s to range of 10 cm. A pitot-static tube and pressure trans- –1 Uhigh = 7.1 m s and vice versa. After an abrupt change ducer were located at the entrance of the tank in order to of wind speed, we observed the response of wind waves monitor the mean wind velocity, U. An X hot-film an- with time throughout the tank until temporal equilibrium emometer was used at 5.5 m fetch and 1.9 cm height to was reached everywhere, i.e., the waves were everywhere measure the Reynolds stress in the air. During the gust in their fetch-limited (steady) state. experiment, both the X hot-film anemometer signal and In an initial adjustment stage, the waves reached a the pressure transducer signal were sampled simultane- state of quasi-equilibrium or local equilibrium after a very ously with the wave wire signal at 50 Hz, using a compu- short adjustment time. The strong tendency toward this ter. Fig. 1. Diagram of the wind-wave tank: 7.0 m long, 30 cm wide, 15 cm water depth with 15 cm air passage height. Scales are distorted. 520 T. Waseda et al. 2.2 Gust experiment and data analyses The shutter was opened and closed 40 times at an 2.2.1 Sudden change of wind speed interval of about 2 minutes, giving 20 increasing steps A manual shutter that reduces the area of the fan and 20 decreasing steps per run. The response time for outlet was used to create an abrupt change in the mean the wave spectrum at fetch 5.5 m to reach an equilibrium wind speed, from 7.1 m s–1 to 4.6 m s–1. The response state after a step-like increase/decrease of the wind speed time of the mean wind speed was short, typically around was much less than 2 minutes. 0.3 s, Fig. 2. It is obvious from this figure that the transi- 2.2.2 Analysis technique tion time for the mean wind speed is much less than a Data samples of 2 s length were sub-sampled from second and the sharp steps in the mean wind speed record the original time series; the 2 s interval began at times ∆t are considered appropriate to serve as a time reference after the steps; ∆t was varied in 1 s increments; twenty of for the further analysis described below.
Recommended publications
  • A Near-Shore Linear Wave Model with the Mixed Finite Volume and Finite Difference Unstructured Mesh Method
    fluids Article A Near-Shore Linear Wave Model with the Mixed Finite Volume and Finite Difference Unstructured Mesh Method Yong G. Lai 1,* and Han Sang Kim 2 1 Technical Service Center, U.S. Bureau of Reclamation, Denver, CO 80225, USA 2 Bay-Delta Office, California Department of Water Resources, Sacramento, CA 95814, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-303-445-2560 Received: 5 October 2020; Accepted: 1 November 2020; Published: 5 November 2020 Abstract: The near-shore and estuary environment is characterized by complex natural processes. A prominent feature is the wind-generated waves, which transfer energy and lead to various phenomena not observed where the hydrodynamics is dictated only by currents. Over the past several decades, numerical models have been developed to predict the wave and current state and their interactions. Most models, however, have relied on the two-model approach in which the wave model is developed independently of the current model and the two are coupled together through a separate steering module. In this study, a new wave model is developed and embedded in an existing two-dimensional (2D) depth-integrated current model, SRH-2D. The work leads to a new wave–current model based on the one-model approach. The physical processes of the new wave model are based on the latest third-generation formulation in which the spectral wave action balance equation is solved so that the spectrum shape is not pre-imposed and the non-linear effects are not parameterized. New contributions of the present study lie primarily in the numerical method adopted, which include: (a) a new operator-splitting method that allows an implicit solution of the wave action equation in the geographical space; (b) mixed finite volume and finite difference method; (c) unstructured polygonal mesh in the geographical space; and (d) a single mesh for both the wave and current models that paves the way for the use of the one-model approach.
    [Show full text]
  • SWAN Technical Manual
    SWAN TECHNICAL DOCUMENTATION SWAN Cycle III version 40.51 SWAN TECHNICAL DOCUMENTATION by : The SWAN team mail address : Delft University of Technology Faculty of Civil Engineering and Geosciences Environmental Fluid Mechanics Section P.O. Box 5048 2600 GA Delft The Netherlands e-mail : [email protected] home page : http://www.fluidmechanics.tudelft.nl/swan/index.htmhttp://www.fluidmechanics.tudelft.nl/sw Copyright (c) 2006 Delft University of Technology. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sec- tions, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is available at http://www.gnu.org/licenses/fdl.html#TOC1http://www.gnu.org/licenses/fdl.html#TOC1. Contents 1 Introduction 1 1.1 Historicalbackground. 1 1.2 Purposeandmotivation . 2 1.3 Readership............................. 3 1.4 Scopeofthisdocument. 3 1.5 Overview.............................. 4 1.6 Acknowledgements ........................ 5 2 Governing equations 7 2.1 Spectral description of wind waves . 7 2.2 Propagation of wave energy . 10 2.2.1 Wave kinematics . 10 2.2.2 Spectral action balance equation . 11 2.3 Sourcesandsinks ......................... 12 2.3.1 Generalconcepts . 12 2.3.2 Input by wind (Sin).................... 19 2.3.3 Dissipation of wave energy (Sds)............. 21 2.3.4 Nonlinear wave-wave interactions (Snl) ......... 27 2.4 The influence of ambient current on waves . 33 2.5 Modellingofobstacles . 34 2.6 Wave-inducedset-up . 35 2.7 Modellingofdiffraction. 35 3 Numerical approaches 39 3.1 Introduction...........................
    [Show full text]
  • Storm Waves Focusing and Steepening in the Agulhas Current: Satellite Observations and Modeling T ⁎ Y
    Remote Sensing of Environment 216 (2018) 561–571 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Storm waves focusing and steepening in the Agulhas current: Satellite observations and modeling T ⁎ Y. Quilfena, , M. Yurovskayab,c, B. Chaprona,c, F. Ardhuina a IFREMER, Univ. Brest, CNRS, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), Brest, France b Marine Hydrophysical Institute RAS, Sebastopol, Russia c Russian State Hydrometeorological University, Saint Petersburg, Russia ARTICLE INFO ABSTRACT Keywords: Strong ocean currents can modify the height and shape of ocean waves, possibly causing extreme sea states in Extreme waves particular conditions. The risk of extreme waves is a known hazard in the shipping routes crossing some of the Wave-current interactions main current systems. Modeling surface current interactions in standard wave numerical models is an active area Satellite altimeter of research that benefits from the increased availability and accuracy of satellite observations. We report a SAR typical case of a swell system propagating in the Agulhas current, using wind and sea state measurements from several satellites, jointly with state of the art analytical and numerical modeling of wave-current interactions. In particular, Synthetic Aperture Radar and altimeter measurements are used to show the evolution of the swell train and resulting local extreme waves. A ray tracing analysis shows that the significant wave height variability at scales < ~100 km is well associated with the current vorticity patterns. Predictions of the WAVEWATCH III numerical model in a version that accounts for wave-current interactions are consistent with observations, al- though their effects are still under-predicted in the present configuration.
    [Show full text]
  • Semi-Empirical Dissipation Source Functions for Ocean Waves: Part I, Definition, Calibration and Validation
    A Generated using V3.0 of the official AMS L TEX template–journal page layout FOR AUTHOR USE ONLY, NOT FOR SUBMISSION! Semi-empirical dissipation source functions for ocean waves: Part I, definition, calibration and validation. Fabrice Ardhuin ∗, Jean-Franc¸ois Filipot and Rudy Magne Service Hydrographique et Oc´eanographique de la Marine, Brest, France Erick Rogers Oceanography Division, Naval Research Laboratory, Stennis Space Center, MS, USA Alexander Babanin Swinburne University, Hawthorn, VA, Australia Pierre Queffeulou Ifremer, Laboratoire d’Oc´eanographie Spatiale, Plouzan´e, France Lotfi Aouf and Jean-Michel Lefevre UMR GAME, M´et´eo-France - CNRS, Toulouse, France Aron Roland Technological University of Darmstadt, Germany Andre van der Westhuysen Deltares, Delft, The Netherlands Fabrice Collard CLS, Division Radar, Plouzan´e, France ABSTRACT New parameterizations for the spectral dissipation of wind-generated waves are proposed. The rates of dissipation have no predetermined spectral shapes and are functions of the wave spectrum, in a way consistent with observation of wave breaking and swell dissipation properties. Namely, swell dissipation is nonlinear and proportional to the swell steepness, and wave breaking only affects spectral components such that the non-dimensional spectrum exceeds the threshold at which waves are observed to start breaking. An additional source of short wave dissipation due to long wave breaking is introduced, together with a reduction of wind-wave generation term for short waves, otherwise taken from Janssen (J. Phys. Oceanogr. 1991). These parameterizations are combined and calibrated with the Discrete Interaction Approximation of Hasselmann et al. (J. Phys. Oceangr. 1985) for the nonlinear interactions. Parameters are adjusted to reproduce observed shapes of directional wave spectra, and the variability of spectral moments with wind speed and wave height.
    [Show full text]
  • Appendix D — Summary of Hydrodynamic, Sediment Transport
    Appendix D Summary of Hydrodynamic, Sediment Transport, and Wave Modeling Appendix D Summary of Hydrodynamic, Sediment Transport, and Wave Modeling Spirit Lake Sediment Site Prepared for U. S. Steel Corporation November 2014 325 S. Lake Avenue, Suite 700 Duluth, MN 55802-2323 Phone: 218.529.8200 Fax: 218.529.8202 Summary of Hydrodynamic, Sediment Transport, and Wave Modeling Spirit Lake Sediment Site November 2014 Contents 1.0 Introduction ........................................................................................................................................................................... 1 1.1 Spirit Lake Physical System ......................................................................................................................................... 1 1.1.1 Bathymetric Scans ..................................................................................................................................................... 2 1.1.2 Hydrodynamic Data .................................................................................................................................................. 2 1.1.2.1 River Discharge ................................................................................................................................................. 3 1.1.2.2 Water Level ........................................................................................................................................................ 3 1.1.2.3 Flow Velocity ....................................................................................................................................................
    [Show full text]
  • A Modelling Approach for the Assessment of Wave-Currents Interaction in the Black Sea
    Journal of Marine Science and Engineering Article A Modelling Approach for the Assessment of Wave-Currents Interaction in the Black Sea Salvatore Causio 1,* , Stefania A. Ciliberti 1 , Emanuela Clementi 2, Giovanni Coppini 1 and Piero Lionello 3 1 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Ocean Predictions and Applications Division, 73100 Lecce, Italy; [email protected] (S.A.C.); [email protected] (G.C.) 2 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Ocean Modelling and Data Assimilation Division, 40127 Bologna, Italy; [email protected] 3 Department of Biological and Environmental Sciences and Technologies, University of Salento—DiSTeBA, 73100 Lecce, Italy; [email protected] * Correspondence: [email protected] Abstract: In this study, we investigate wave-currents interaction for the first time in the Black Sea, implementing a coupled numerical system based on the ocean circulation model NEMO v4.0 and the third-generation wave model WaveWatchIII v5.16. The scope is to evaluate how the waves impact the surface ocean dynamics, through assessment of temperature, salinity and surface currents. We provide also some evidence on the way currents may impact on sea-state. The physical processes considered here are Stokes–Coriolis force, sea-state dependent momentum flux, wave-induced vertical mixing, Doppler shift effect, and stability parameter for computation of effective wind speed. The numerical system is implemented for the Black Sea basin (the Azov Sea is not included) at a horizontal resolution of about 3 km and at 31 vertical levels for the hydrodynamics. Wave spectrum has been discretised into 30 frequencies and 24 directional bins.
    [Show full text]
  • Study of a Wind-Wave Numerical Model and Its Integration with an Ocean and an Oil-Spill Numerical Models
    Alma Mater Studiorum di Bologna Facolta` di Scienze MM.FF.NN. Tesi di Laurea Magistrale in Analisi e Gestione dell'Ambiente Study of a Wind-Wave Numerical Model and its integration with an Ocean and an Oil-Spill Numerical Models Relatore Candidato Prof.ssa Nadia Pinardi Diego Bruciaferri Correlatori Dott.ssa Michela De Dominicis Dott. Francesco Trotta Anno Accademico 2012/2013 Given for one instant an intelligence which could comprehend all the forces by which nature is animated, ... to it nothing would be uncertain, and the future as the past would be present to its eyes. Laplace, Oeuvres Desidero ringraziare mio padre, mia madre e i miei fratelli che hanno sempre creduto in me e hanno sempre supportato le mie scelte. Desidero inoltre ringraziare la Prof.ssa Nadia Pinardi, che, con il suo in- coraggiamento e la sua contagiosa passione per la fisica e il mare, non ha mai smesso di motivarmi nel superare gli scogli piu' difficili incontrati du- rante questo lavoro. Un ringraziamento speciale va alla Dott.ssa Michela De Dominicis, al Dott. Luca Giacomelli e al Dott. Francesco Trotta, senza l'aiuto dei quali questo lavoro non avrebbe potuto essere portato a termine. Un grazie poi a tutti i Prof.ri del mio corso di Laurea, per l'entusiasmo che hanno messo nelle loro lezioni e per i loro insegnamenti. Un grazie a Claudia, Giulia, Emanuela, Augusto e a tutti i ragazzi che hanno frequentato i laboratori del SINCEM, perche' tutti mi hanno lasciato qualcosa. Un grazie poi va ai miei compagni di corso, al `crucco' Matteo, al `terroncello' Roberto, a Francesco, Riccardo, Michela, Manuela, Caterina e tutti gli altri, per i bei due anni passati insieme.
    [Show full text]
  • Evaluation of the Significant Wave Height Data Quality for the Sentinel
    remote sensing Technical Note Evaluation of the Significant Wave Height Data Quality for the Sentinel-3 Synthetic Aperture Radar Altimeter Yong Wan 1,* , Rongjuan Zhang 2, Xiaodong Pan 3, Chenqing Fan 4 and Yongshou Dai 1 1 College of Oceanography and Space Informatics, China University of Petroleum, No. 66, Changjiangxi Road, Huangdao District, Qingdao 266580, China; [email protected] 2 College of Control Science and Engineering, China University of Petroleum, No. 66, Changjiangxi Road, Huangdao District, Qingdao 266580, China; [email protected] 3 Marine Environmental Monitoring Center of Wenzhou, the State Oceanic Administration, No. 2, Xinanjiang Road, Wenzhou Avenue, Wenzhou 325000, China; [email protected] 4 Remote Sensing Office of The First Institute of Oceanography, Ministry of Natural Resources, No. 6, Xianxia Road, Laoshan District, Qingdao 266061, China; fanchenqing@fio.org.cn * Correspondence: [email protected]; Tel.: +86-150-5325-1676 Received: 21 August 2020; Accepted: 19 September 2020; Published: 22 September 2020 Abstract: Synthetic aperture radar (SAR) altimeters represent a new method of microwave remote sensing for ocean wave observations. The adoption of SAR technology in the azimuthal direction has the advantage of a high resolution. The Sentinel-3 altimeter is the first radar altimeter to acquire global observations in SAR mode; hence, the data quality needs to be assessed before extensively applying these data. The European Space Agency (ESA) evaluates the Sentinel-3 accuracy on a global scale but has yet to perform a detailed analysis in terms of different offshore distances and different water depths. In this paper, Sentinel-3 and Jason-2 significant wave height (SWH) data are matched in both time and space with buoy data from the United States East and West Coasts and the Central Pacific Ocean.
    [Show full text]
  • Field Surveys and Numerical Simulation of the 2018 Typhoon Jebi: Impact of High Waves and Storm Surge in Semi-Enclosed Osaka Bay, Japan
    Pure Appl. Geophys. 176 (2019), 4139–4160 Ó 2019 Springer Nature Switzerland AG https://doi.org/10.1007/s00024-019-02295-0 Pure and Applied Geophysics Field Surveys and Numerical Simulation of the 2018 Typhoon Jebi: Impact of High Waves and Storm Surge in Semi-enclosed Osaka Bay, Japan 1 1 2 1 1 TUAN ANH LE, HIROSHI TAKAGI, MOHAMMAD HEIDARZADEH, YOSHIHUMI TAKATA, and ATSUHEI TAKAHASHI Abstract—Typhoon Jebi made landfall in Japan in 2018 and hit 1. Introduction Osaka Bay on September 4, causing severe damage to Kansai area, Japan’s second largest economical region. We conducted field surveys around the Osaka Bay including the cities of Osaka, Annually, an average of 2.9 tropical cyclones Wakayama, Tokushima, Hyogo, and the island of Awaji-shima to (from 1951 to 2016) have hit Japan (Takagi and evaluate the situation of these areas immediately after Typhoon Esteban 2016; Takagi et al. 2017). The recent Jebi struck. Jebi generated high waves over large areas in these regions, and many coasts were substantially damaged by the Typhoon Jebi in September 2018 has been the combined impact of high waves and storm surges. The Jebi storm strongest tropical cyclone to come ashore in the last surge was the highest in the recorded history of Osaka. We used a 25 years since Typhoon Yancy (the 13th typhoon to storm surge–wave coupled model to investigate the impact caused by Jebi. The simulated surge level was validated with real data hit Japan, in 1993), severely damaging areas in its acquired from three tidal stations, while the wave simulation results trajectory.
    [Show full text]
  • U Ncorrected Proof
    Pure Appl. Geophys. Ó 2019 Springer Nature Switzerland AG https://doi.org/10.1007/s00024-019-02295-0 Pure and Applied Geophysics 1 Field Surveys and Numerical Simulation of the 2018 Typhoon Jebi: Impact of High Waves 2 and Storm Surge in Semi-enclosed Osaka Bay, Japan 3 1 1 2 1 1 4 LE TUAN ANH, HIROSHI TAKAGI, MOHAMMAD HEIDARZADEH, YOSHIHUMI TAKATA, and ATSUHEI TAKAHASHI 5 Abstract—Typhoon Jebi made landfall in Japan in 2018 and hit 1. Introduction 39 6 Osaka Bay on September 4, causing severe damage to Kansai area, 7 Japan’s second largest economical region. We conducted field 8 surveys around the Osaka Bay including the cities of Osaka, Annually, an average of 2.9 tropical cyclones 40 Author Proof 9 Wakayama, Tokushima, Hyogo, and the island of Awaji-shima to (from 1951 to 2016) have hit Japan (Takagi and 41 10 evaluate the situation of these areas immediately after Typhoon 42 11 Esteban 2016; Takagi et al. 2017). The recent Jebi struck. Jebi generated high waves over large areas in these 43 12 regions, and many coasts were substantially damaged by the Typhoon Jebi in September 2018 has been the 13 combined impact of high waves and storm surges. The Jebi storm strongest tropical cyclone to come ashore in the last 44 14 surge was the highest in the recorded history of Osaka. We used a 45 15 25 years since Typhoon Yancy (the 13th typhoon to storm surge–wave coupled model to investigate the impact caused 46 16 by Jebi. The simulated surge level was validated with real data hit Japan, in 1993), severely damaging areas in its 17 acquired from three tidal stations, while the wave simulation results trajectory.
    [Show full text]
  • Numerical Modelling of Wind Waves. Problems, Solutions, Verifications, and Applications
    1 NUMERICAL MODELLING OF WIND WAVES. PROBLEMS, SOLUTIONS, VERIFICATIONS, AND APPLICATIONS V. G. Polnikov1 CONTENTS Abstract 1. Introduction 2. Fundamental equations and conceptions 3. Wave evolution mechanism due to nonlinearity 4. Wind wave energy pumping mechanism 5. Wind wave dissipation mechanism 6. Verification of new source function 7. Future applications 8. References 1 Research professor, A.M. Obukhov Institute for Physics of Atmosphere of Russian Academy of Sciences, Moscow, Russia 119017, e-mail: [email protected] 2 ABSTRACT Due to stochastic feature of a wind-wave field, the time-space evolution of the field is described by the transport equation for the 2-dimensional wave energy spectrum density, σ θ x, tS ),;( , spread in the space, x, and time, t. This equation has the forcing named the source function, F, depending on both the wave spectrum, S , and the external wave-making factors: local wind, W(x, t), and local current, U(x, t). The source function, F, is the “heart” of any numerical wind wave model, as far as it contains certain physical mechanisms responsible for a wave spectrum evolution. It is used to distinguish three terms in function F: the wind-wave energy exchange mechanism, In; the energy conservative mechanism of nonlinear wave-wave interactions, Nl; and the wave energy loss mechanism, Dis, related, mainly, to the wave breaking and interaction of waves with the turbulence of water upper layer and with the bottom. Differences in mathematical representation of the source function terms determine general differences between wave models. The problem is to derive analytical representations for the source function terms said above from the fundamental wave equations.
    [Show full text]
  • Role of Surface Gravity Waves in Aquaplanet Ocean Climates
    Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems Role of Surface Gravity Waves in Aquaplanet Ocean Climates a# b#* bc J. H. P. Studholme , M. Yu. Markina and S. K. Gulev # These authors are sharing lead author status a Yale University, New Haven, CT. USA b Shirshov Institute of Oceanology, Russian Academy of Science, Moscow, Russia c Lomonosov Moscow State University, Moscow, Russia *Present affiliation: University of Oxford, UK. Corresponding author: Josh Studholme ([email protected]), https://orcid.org/0000- 0003-0704-0286 Corresponding author: Rita Markina ([email protected]), https://orcid.org/0000-0003- 3563-8242 Key points: 1. IdealiZed oceanic climates forced by ranging atmospheric regimes following equator-to- pole thermal gradient perturbations are investigated. 2. Wind-forced surface gravity waves deepen the mixed layer, increase mixed layer vertical momentum diffusivity and dampen surface currents. 3. The consistency of the effects of waves on ocean dynamics and stratification across cooler/warmer aquaplanet climates is examined. Manuscript length: 25/25 PU – 7.5k words (15 PU), 10 plots (10 PU) Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems Plain Language Summary In this study, we investigate how wind-driven ocean surface waves impact the ocean properties using a combination of numerical models. We simulate atmospheric and oceanic circulation on an aquaplanet (analogous to the Earth without continents). This allows us to study the ocean response to different regimes of large-scale atmospheric circulation which are set simply by changes in the gradient of sea surface temperature between the tropics and the poles.
    [Show full text]