A Class of Generalized Beta Distributions, Pareto Power Series and Weibull Power Series

Total Page:16

File Type:pdf, Size:1020Kb

A Class of Generalized Beta Distributions, Pareto Power Series and Weibull Power Series A CLASS OF GENERALIZED BETA DISTRIBUTIONS, PARETO POWER SERIES AND WEIBULL POWER SERIES ALICE LEMOS DE MORAIS Primary advisor: Prof. Audrey Helen M. A. Cysneiros Secondary advisor: Prof. Gauss Moutinho Cordeiro Concentration area: Probability Disserta¸c˜ao submetida como requerimento parcial para obten¸c˜aodo grau de Mestre em Estat´ısticapela Universidade Federal de Pernambuco. Recife, fevereiro de 2009 Morais, Alice Lemos de A class of generalized beta distributions, Pareto power series and Weibull power series / Alice Lemos de Morais - Recife : O Autor, 2009. 103 folhas : il., fig., tab. Dissertação (mestrado) – Universidade Federal de Pernambuco. CCEN. Estatística, 2009. Inclui bibliografia e apêndice. 1. Probabilidade. I. Título. 519.2 CDD (22.ed.) MEI2009-034 Agradecimentos A` minha m˜ae,Marcia, e ao meu pai, Marcos, por serem meus melhores amigos. Agrade¸co pelo apoio `aminha vinda para Recife e pelo apoio financeiro. Agrade¸coaos meus irm˜aos, Daniel, Gabriel e Isadora, bem como a meus primos, Danilo e Vanessa, por divertirem minhas f´erias. A` minha tia Gilma pelo carinho e por pedir `asua amiga, Mirlana, que me acolhesse nos meus primeiros dias no Recife. A` Mirlana por amenizar minha mudan¸cade ambiente fazendo-me sentir em casa durante meus primeiros dias nesta cidade. Agrade¸comuito a ela e a toda sua fam´ılia. A` toda minha fam´ılia e amigos pela despedida de Belo Horizonte e `aS˜aozinha por preparar meu prato predileto, frango ao molho pardo com angu. A` vov´oLuzia e ao vovˆoTunico por toda amizade, carinho e preocupa¸c˜ao, por todo apoio nos meus dias mais dif´ıceis em Recife e pelo apoio financeiro nos momentos que mais precisei. A` Michelle, ao F´abioe `aMaristela por fazerem da ida ao Jardim de Minas, carinhosa- mente apelidado de JD, um dos meus compromissos mais esperados toda vez que retornava a Belo Horizonte. Agrade¸co`aTalita por toda amizade e por toda felicidade que ela me traz. Agrade¸co`aMichelle por me visitar no Recife. Ao professor Andrei Toom por ter me ensinado mais sobre lecionar que ele possa imaginar. Ao professor Klaus por ser um dos melhores professores que j´ative - pra n˜ao dizer o melhor. Ao Wagner, simplesmente por ser quem ele ´e,amigo, verdadeiro, atencioso, honesto, honrado. Agrade¸coa ele por ser uma das raz˜oes que mais fez valer a pena minha vinda para Recife. Agrade¸copor cuidar de mim, pelas partidas de domin´o,pelos dias e noites de estudo, por se empaturrar de polenguinho comigo, por me acompanhar na decis˜aos´ubita de ir a Natal s´opra ver o Atl´eticoMineiro jogar. Agrade¸coaos seus pais e `asua irm˜apelo carinho e por me fazer sentir t˜ao querida. A` Olga, `aRafaella e `aCl´audia, companheiras de moradia, pela amizade. Agrade¸co`a Juliana, Olga, Wagner e L´ıdiapela companhia em estudos e madrugadas fazendo trabalho. Agrade¸coaos demais colegas da turma de mestrado, Izabel, Wilton, Andr´ea,C´ıceroe Ma- noel. Agrade¸coaos colegas da estat´ıstica, Raphael, Marcelo, Lilian, Valmir, Hem´ılio,Abra˜ao, F´abioVer´ıssimo, Daniel, entre muitos outros que fizeram meus dias mais alegres. Agrade¸co ao Wagner, Alessandro, Rodrigo, Alexandre e `aAndr´ea, por muitas ajudas, sinucas e gar- galhadas. Ao Ives pelas visitas, pela divers˜aoe pelas ajudas. A` Val´eriapor toda ajuda. Aos amigos que conheci na computa¸c˜ao,especialmente Kalil, Rafael e seu amigo Luiz, por me divertirem tanto. Agrade¸co aos colegas da f´ısica,tamb´em,por me fazerem rir muito. Dentre eles agrade¸coparticularmente ao Vladimir, pela companhia, carinho e amizade ´ımpares. A` Anete pela amizade e pela deliciosa viagem para Pipa, assim como agrade¸coao Allan e `afam´ıliado Raphael por me receberem em suas casas em Natal. Agrade¸coaos pais e `a irm˜ado Raphael pelos passeios e pela batata da Barbie. Aos meus amigos de Belo Horizonte pela amizade, apoio e por me fazerem t˜ao bem. A` CAPES pela bolsa de estudos e ao Departamento de Estat´ısticapor me oferecerem este curso de mestrado. A` minha orientadora, Audrey Cysneiros, pela orienta¸c˜aoe por ajudar a me organizar. Agrade¸coao Gauss Cordeiro, que gentilmente aceitou me co-orientar. Agrade¸copelo que me ensinou e pelo que eu pude aprender somente ao observ´a-lo. Agrade¸co por ter encontrado nele um grande e raro exemplo de pessoa e profissional. Agrade¸copor ter me levado ao m´edicoquando n˜ao estive bem e por toda preocupa¸c˜ao, seja ela acadˆemicaou n˜ao. Ao Leandro Rˆegoe ao Borko Stosic, por terem aceitado o convite de participar da minha banca. Enfim, agrade¸coa todos que de alguma forma, direta ou indireta, fizeram dos meus dias neste mestrado e nesta cidade mais tranquilos e alegres. Resumo Nesta disserta¸c˜aotrabalhamos com trˆesclasses de distribui¸c˜oesde probabilidade, sendo uma j´aconhecida na literatura, a Classe de Distribui¸c˜oes Generalizadas Beta (Beta-G) e duas outras novas classes introduzidas nesta tese, baseadas na composi¸c˜ao das distribui¸c˜oes Pareto e Weibull com a classe de distribui¸c˜oesdiscretas power series. Fazemos uma revis˜ao geral da classe Beta-G e introduzimos um caso especial, a distribui¸c˜aobeta log´ıstica gen- eralizada do tipo IV (BGL(IV)). Introduzimos distribui¸c˜oesrelacionadas `aBGL(IV) que tamb´empertencem `aclasse Beta-G, como a beta-beta prime e a beta-F. Introduzimos a classe Pareto power series (PPS), que ´euma mistura de distribui¸c˜oes Pareto com pesos definidos pela distribui¸c˜aopower series, e apresentamos algumas de suas propriedades. In- troduzimos a classe Weibull power series (WPS), cujo processo de constru¸c˜ao´esimilar ao da classe PPS. Apresentamos algumas de suas propriedades e aplica¸c˜ao a um banco de dados reais. Distribui¸c˜oes nesta classe tˆem aplica¸c˜aointeressante a dados de tempo de vida devido `avariedade de formas da fun¸c˜aode risco. Para as classes PPS e WPS, fizemos uma sim- ula¸c˜ao para avaliar m´etodos de sele¸c˜ao de modelo. A distribui¸c˜ao pareto ´eum caso especial limite da distribui¸c˜ao PPS, assim como a distribui¸c˜ao Weibull ´eum caso especial limite da distribui¸c˜aoWPS. Palavras-chave: Distribui¸c˜oes generalizadas; Distribui¸c˜ao Beta; Distribui¸c˜aoWeibull; Distribui¸c˜ao de Pareto; Power series; Algoritmo EM. Abstract In this thesis we work with three classes of probability distributions, one already known in the literature, the Class of Generalized Beta Distributions (Beta-G) and two new classes, based on the composition of the Pareto and Weibull distributions and the class of discrete distributions power series. We make a general review of this class and introduced a special case, the beta generalized logistics of type IV (BGL(IV)) distribution. We introduce some distributions related to the BGL(IV) that are in the Beta-G class, such as beta-beta prime and beta-F distributions. We introduce the Pareto power series (PPS) class of distribu- tions, which is a mixture of the Pareto distribution with weights defined by power series, and present some of their properties. We introduce the Weibull power series (WPS) class of distributions, whose construction process is similar to the PPS class. We present some of its properties and application to a real data set. Distributions in this class have interesting ap- plication to lifetime data due to the variety of the shapes of the hazard function. The Pareto distribution is a limiting special case of the PPS distribution and the Weibull distribution is a special limit case of the WPS distribution. For the PPS and WPS classes we made a simulation to evaluate methods for model selection. Palavras-chave: Generalized distributions; Beta distribution; Weibull distribution; Pareto distribution; Power series; EM algorithm. Contents 1 Introduction 13 1.1 Apresenta¸c˜ao Inicial . 13 1.2 Initial presentation . 15 2 General Definition of the Class of Generalized Beta Distributions 16 2.1 Resumo . 16 2.2 Introduction . 16 2.3 Definition . 17 2.4 Density function . 17 2.5 Survival and hazard functions . 20 2.6 Moments . 21 2.7 Random number generation . 21 3 Some Special Distributions of the Class of Generalized Beta Distributions 23 3.1 Resumo . 23 3.2 Beta normal . 23 3.2.1 The distribution . 23 3.2.2 Moments . 25 3.2.3 Random number generation . 25 3.2.4 Estimation . 27 3.2.5 Application . 27 3.3 Beta-exponential . 28 3.3.1 The distribution . 28 3.3.2 Hazard function . 28 3.3.3 Moments . 30 3.3.4 Estimation . 30 3.3.5 Random number generation . 31 3.3.6 Application . 31 3.4 Beta Weibull . 33 3.4.1 The distribution . 33 3.4.2 Hazard function . 34 3.4.3 Moments . 35 3.4.4 Estimation . 35 7 3.4.5 Random number generation . 36 3.4.6 Application . 37 3.5 Beta-hyperbolic secant . 37 3.5.1 The distribution . 37 3.5.2 Estimation . 38 3.5.3 Random number generation . 39 3.5.4 Application . 40 3.6 Beta gamma . 40 3.6.1 The distribution . 41 3.6.2 Hazard function . 42 3.6.3 Moments . 43 3.6.4 Estimation . 43 3.6.5 Random number generation . 44 3.6.6 Application . 44 3.7 Beta Gumbel . 45 3.7.1 The distribution . 45 3.7.2 Estimation . 46 3.7.3 Random number generation . 47 3.7.4 Application . 47 3.8 Beta Fr´echet . 48 3.8.1 The distribution . 49 3.8.2 Hazard function . 49 3.8.3 Estimation . 50 3.8.4 Random number generation .
Recommended publications
  • Benford's Law As a Logarithmic Transformation
    Benford’s Law as a Logarithmic Transformation J. M. Pimbley Maxwell Consulting, LLC Abstract We review the history and description of Benford’s Law - the observation that many naturally occurring numerical data collections exhibit a logarithmic distribution of digits. By creating numerous hypothetical examples, we identify several cases that satisfy Benford’s Law and several that do not. Building on prior work, we create and demonstrate a “Benford Test” to determine from the functional form of a probability density function whether the resulting distribution of digits will find close agreement with Benford’s Law. We also discover that one may generalize the first-digit distribution algorithm to include non-logarithmic transformations. This generalization shows that Benford’s Law rests on the tendency of the transformed and shifted data to exhibit a uniform distribution. Introduction What the world calls “Benford’s Law” is a marvelous mélange of mathematics, data, philosophy, empiricism, theory, mysticism, and fraud. Even with all these qualifiers, one easily describes this law and then asks the simple questions that have challenged investigators for more than a century. Take a large collection of positive numbers which may be integers or real numbers or both. Focus only on the first (non-zero) digit of each number. Count how many numbers of the large collection have each of the nine possibilities (1-9) as the first digit. For typical J. M. Pimbley, “Benford’s Law as a Logarithmic Transformation,” Maxwell Consulting Archives, 2014. number collections – which we’ll generally call “datasets” – the first digit is not equally distributed among the values 1-9.
    [Show full text]
  • 1988: Logarithmic Series Distribution and Its Use In
    LOGARITHMIC SERIES DISTRIBUTION AND ITS USE IN ANALYZING DISCRETE DATA Jeffrey R, Wilson, Arizona State University Tempe, Arizona 85287 1. Introduction is assumed to be 7. for any unit and any trial. In a previous paper, Wilson and Koehler Furthermore, for ~ach unit the m trials are (1988) used the generalized-Dirichlet identical and independent so upon summing across multinomial model to account for extra trials X. = (XI~. X 2 ...... X~.)', the vector of variation. The model allows for a second order counts ~r the j th ~nit has ~3multinomial of pairwise correlation among units, a type of distribution with probability vector ~ = (~1' assumption found reasonable in some biological 72 ..... 71) ' and sample size m. Howe~er, data. In that paper, the two-way crossed responses given by the J units at a particular generalized Dirichlet Multinomial model was used trial may be correlated, producing a set of J to analyze repeated measure on the categorical correlated multinomial random vectors, X I, X 2, preferences of insurance customers. The number • o.~ X • of respondents was assumed to be fixed and Ta~is (1962) developed a model for this known. situation, which he called the generalized- In this paper a generalization of the model multinomial distribution in which a single is made allowing the number of respondents m, to parameter P, is used to reflect the common be random. Thus both the number of units m, and dependency between any two of the dependent the underlying probability vector are allowed to multinomial random vectors. The distribution of vary. The model presented here uses the m logarithmic series distribution to account for the category total Xi3.
    [Show full text]
  • Notes on Scale-Invariance and Base-Invariance for Benford's
    NOTES ON SCALE-INVARIANCE AND BASE-INVARIANCE FOR BENFORD’S LAW MICHAŁ RYSZARD WÓJCIK Abstract. It is known that if X is uniformly distributed modulo 1 and Y is an arbitrary random variable independent of X then Y + X is also uniformly distributed modulo 1. We prove a converse for any continuous random variable Y (or a reasonable approximation to a continuous random variable) so that if X and Y +X are equally distributed modulo 1 and Y is independent of X then X is uniformly distributed modulo 1 (or approximates the uniform distribution equally reasonably). This translates into a characterization of Benford’s law through a generalization of scale-invariance: from multiplication by a constant to multiplication by an independent random variable. We also show a base-invariance characterization: if a positive continuous random variable has the same significand distribution for two bases then it is Benford for both bases. The set of bases for which a random variable is Benford is characterized through characteristic functions. 1. Introduction Before the early 1970s, handheld electronic calculators were not yet in widespread use and scientists routinely used in their calculations books with tables containing the decimal logarithms of numbers between 1 and 10 spaced evenly with small increments like 0.01 or 0.001. For example, the first page would be filled with numbers 1.01, 1.02, 1.03, . , 1.99 in the left column and their decimal logarithms in the right column, while the second page with 2.00, 2.01, 2.02, 2.03, ..., 2.99, and so on till the ninth page with 9.00, 9.01, 9.02, 9.03, .
    [Show full text]
  • Package 'Distributional'
    Package ‘distributional’ February 2, 2021 Title Vectorised Probability Distributions Version 0.2.2 Description Vectorised distribution objects with tools for manipulating, visualising, and using probability distributions. Designed to allow model prediction outputs to return distributions rather than their parameters, allowing users to directly interact with predictive distributions in a data-oriented workflow. In addition to providing generic replacements for p/d/q/r functions, other useful statistics can be computed including means, variances, intervals, and highest density regions. License GPL-3 Imports vctrs (>= 0.3.0), rlang (>= 0.4.5), generics, ellipsis, stats, numDeriv, ggplot2, scales, farver, digest, utils, lifecycle Suggests testthat (>= 2.1.0), covr, mvtnorm, actuar, ggdist RdMacros lifecycle URL https://pkg.mitchelloharawild.com/distributional/, https: //github.com/mitchelloharawild/distributional BugReports https://github.com/mitchelloharawild/distributional/issues Encoding UTF-8 Language en-GB LazyData true Roxygen list(markdown = TRUE, roclets=c('rd', 'collate', 'namespace')) RoxygenNote 7.1.1 1 2 R topics documented: R topics documented: autoplot.distribution . .3 cdf..............................................4 density.distribution . .4 dist_bernoulli . .5 dist_beta . .6 dist_binomial . .7 dist_burr . .8 dist_cauchy . .9 dist_chisq . 10 dist_degenerate . 11 dist_exponential . 12 dist_f . 13 dist_gamma . 14 dist_geometric . 16 dist_gumbel . 17 dist_hypergeometric . 18 dist_inflated . 20 dist_inverse_exponential . 20 dist_inverse_gamma
    [Show full text]
  • Statistical Distributions in General Insurance Stochastic Processes
    Statistical distributions in general insurance stochastic processes by Jan Hendrik Harm Steenkamp Submitted in partial fulfilment of the requirements for the degree Magister Scientiae In the Department of Statistics In the Faculty of Natural & Agricultural Sciences University of Pretoria Pretoria January 2014 © University of Pretoria 1 I, Jan Hendrik Harm Steenkamp declare that the dissertation, which I hereby submit for the degree Magister Scientiae in Mathematical Statistics at the University of Pretoria, is my own work and has not previously been submit- ted for a degree at this or any other tertiary institution. SIGNATURE: DATE: 31 January 2014 © University of Pretoria Summary A general insurance risk model consists of in initial reserve, the premiums collected, the return on investment of these premiums, the claims frequency and the claims sizes. Except for the initial reserve, these components are all stochastic. The assumption of the distributions of the claims sizes is an integral part of the model and can greatly influence decisions on reinsurance agreements and ruin probabilities. An array of parametric distributions are available for use in describing the distribution of claims. The study is focussed on parametric distributions that have positive skewness and are defined for positive real values. The main properties and parameterizations are studied for a number of distribu- tions. Maximum likelihood estimation and method-of-moments estimation are considered as techniques for fitting these distributions. Multivariate nu- merical maximum likelihood estimation algorithms are proposed together with discussions on the efficiency of each of the estimation algorithms based on simulation exercises. These discussions are accompanied with programs developed in SAS PROC IML that can be used to simulate from the var- ious parametric distributions and to fit these parametric distributions to observed data.
    [Show full text]
  • Package 'Univrng'
    Package ‘UnivRNG’ March 5, 2021 Type Package Title Univariate Pseudo-Random Number Generation Version 1.2.3 Date 2021-03-05 Author Hakan Demirtas, Rawan Allozi, Ran Gao Maintainer Ran Gao <[email protected]> Description Pseudo-random number generation of 17 univariate distributions proposed by Demir- tas. (2005) <DOI:10.22237/jmasm/1114907220>. License GPL-2 | GPL-3 NeedsCompilation no Repository CRAN Date/Publication 2021-03-05 18:10:02 UTC R topics documented: UnivRNG-package . .2 draw.beta.alphabeta.less.than.one . .3 draw.beta.binomial . .4 draw.gamma.alpha.greater.than.one . .5 draw.gamma.alpha.less.than.one . .6 draw.inverse.gaussian . .7 draw.laplace . .8 draw.left.truncated.gamma . .8 draw.logarithmic . .9 draw.noncentral.chisquared . 10 draw.noncentral.F . 11 draw.noncentral.t . 12 draw.pareto . 12 draw.rayleigh . 13 draw.t ............................................ 14 draw.von.mises . 15 draw.weibull . 16 draw.zeta . 16 1 2 UnivRNG-package Index 18 UnivRNG-package Univariate Pseudo-Random Number Generation Description This package implements the algorithms described in Demirtas (2005) for pseudo-random number generation of 17 univariate distributions. The following distributions are available: Left Truncated Gamma, Laplace, Inverse Gaussian, Von Mises, Zeta (Zipf), Logarithmic, Beta-Binomial, Rayleigh, Pareto, Non-central t, Non-central Chi-squared, Doubly non-central F , Standard t, Weibull, Gamma with α<1, Gamma with α>1, and Beta with α<1 and β<1. For some distributions, functions that have similar capabilities exist in the base package; the functions herein should be regarded as com- plementary tools. The methodology for each random-number generation procedure varies and each distribution has its own function.
    [Show full text]
  • Hand-Book on STATISTICAL DISTRIBUTIONS for Experimentalists
    Internal Report SUF–PFY/96–01 Stockholm, 11 December 1996 1st revision, 31 October 1998 last modification 10 September 2007 Hand-book on STATISTICAL DISTRIBUTIONS for experimentalists by Christian Walck Particle Physics Group Fysikum University of Stockholm (e-mail: [email protected]) Contents 1 Introduction 1 1.1 Random Number Generation .............................. 1 2 Probability Density Functions 3 2.1 Introduction ........................................ 3 2.2 Moments ......................................... 3 2.2.1 Errors of Moments ................................ 4 2.3 Characteristic Function ................................. 4 2.4 Probability Generating Function ............................ 5 2.5 Cumulants ......................................... 6 2.6 Random Number Generation .............................. 7 2.6.1 Cumulative Technique .............................. 7 2.6.2 Accept-Reject technique ............................. 7 2.6.3 Composition Techniques ............................. 8 2.7 Multivariate Distributions ................................ 9 2.7.1 Multivariate Moments .............................. 9 2.7.2 Errors of Bivariate Moments .......................... 9 2.7.3 Joint Characteristic Function .......................... 10 2.7.4 Random Number Generation .......................... 11 3 Bernoulli Distribution 12 3.1 Introduction ........................................ 12 3.2 Relation to Other Distributions ............................. 12 4 Beta distribution 13 4.1 Introduction .......................................
    [Show full text]
  • Field Guide to Continuous Probability Distributions
    Field Guide to Continuous Probability Distributions Gavin E. Crooks v 1.0.0 2019 G. E. Crooks – Field Guide to Probability Distributions v 1.0.0 Copyright © 2010-2019 Gavin E. Crooks ISBN: 978-1-7339381-0-5 http://threeplusone.com/fieldguide Berkeley Institute for Theoretical Sciences (BITS) typeset on 2019-04-10 with XeTeX version 0.99999 fonts: Trump Mediaeval (text), Euler (math) 271828182845904 2 G. E. Crooks – Field Guide to Probability Distributions Preface: The search for GUD A common problem is that of describing the probability distribution of a single, continuous variable. A few distributions, such as the normal and exponential, were discovered in the 1800’s or earlier. But about a century ago the great statistician, Karl Pearson, realized that the known probabil- ity distributions were not sufficient to handle all of the phenomena then under investigation, and set out to create new distributions with useful properties. During the 20th century this process continued with abandon and a vast menagerie of distinct mathematical forms were discovered and invented, investigated, analyzed, rediscovered and renamed, all for the purpose of de- scribing the probability of some interesting variable. There are hundreds of named distributions and synonyms in current usage. The apparent diver- sity is unending and disorienting. Fortunately, the situation is less confused than it might at first appear. Most common, continuous, univariate, unimodal distributions can be orga- nized into a small number of distinct families, which are all special cases of a single Grand Unified Distribution. This compendium details these hun- dred or so simple distributions, their properties and their interrelations.
    [Show full text]
  • Concentration Inequalities from Likelihood Ratio Method
    Concentration Inequalities from Likelihood Ratio Method ∗ Xinjia Chen September 2014 Abstract We explore the applications of our previously established likelihood-ratio method for deriving con- centration inequalities for a wide variety of univariate and multivariate distributions. New concentration inequalities for various distributions are developed without the idea of minimizing moment generating functions. Contents 1 Introduction 3 2 Likelihood Ratio Method 4 2.1 GeneralPrinciple.................................... ...... 4 2.2 Construction of Parameterized Distributions . ............. 5 2.2.1 WeightFunction .................................... .. 5 2.2.2 ParameterRestriction .............................. ..... 6 3 Concentration Inequalities for Univariate Distributions 7 3.1 BetaDistribution.................................... ...... 7 3.2 Beta Negative Binomial Distribution . ........ 7 3.3 Beta-Prime Distribution . ....... 8 arXiv:1409.6276v1 [math.ST] 1 Sep 2014 3.4 BorelDistribution ................................... ...... 8 3.5 ConsulDistribution .................................. ...... 8 3.6 GeetaDistribution ................................... ...... 9 3.7 GumbelDistribution.................................. ...... 9 3.8 InverseGammaDistribution. ........ 9 3.9 Inverse Gaussian Distribution . ......... 10 3.10 Lagrangian Logarithmic Distribution . .......... 10 3.11 Lagrangian Negative Binomial Distribution . .......... 10 3.12 Laplace Distribution . ....... 11 ∗The author is afflicted with the Department of Electrical
    [Show full text]
  • Package 'Extradistr'
    Package ‘extraDistr’ September 7, 2020 Type Package Title Additional Univariate and Multivariate Distributions Version 1.9.1 Date 2020-08-20 Author Tymoteusz Wolodzko Maintainer Tymoteusz Wolodzko <[email protected]> Description Density, distribution function, quantile function and random generation for a number of univariate and multivariate distributions. This package implements the following distributions: Bernoulli, beta-binomial, beta-negative binomial, beta prime, Bhattacharjee, Birnbaum-Saunders, bivariate normal, bivariate Poisson, categorical, Dirichlet, Dirichlet-multinomial, discrete gamma, discrete Laplace, discrete normal, discrete uniform, discrete Weibull, Frechet, gamma-Poisson, generalized extreme value, Gompertz, generalized Pareto, Gumbel, half-Cauchy, half-normal, half-t, Huber density, inverse chi-squared, inverse-gamma, Kumaraswamy, Laplace, location-scale t, logarithmic, Lomax, multivariate hypergeometric, multinomial, negative hypergeometric, non-standard beta, normal mixture, Poisson mixture, Pareto, power, reparametrized beta, Rayleigh, shifted Gompertz, Skellam, slash, triangular, truncated binomial, truncated normal, truncated Poisson, Tukey lambda, Wald, zero-inflated binomial, zero-inflated negative binomial, zero-inflated Poisson. License GPL-2 URL https://github.com/twolodzko/extraDistr BugReports https://github.com/twolodzko/extraDistr/issues Encoding UTF-8 LazyData TRUE Depends R (>= 3.1.0) LinkingTo Rcpp 1 2 R topics documented: Imports Rcpp Suggests testthat, LaplacesDemon, VGAM, evd, hoa,
    [Show full text]
  • Parametric Representation of the Top of Income Distributions: Options, Historical Evidence and Model Selection
    PARAMETRIC REPRESENTATION OF THE TOP OF INCOME DISTRIBUTIONS: OPTIONS, HISTORICAL EVIDENCE AND MODEL SELECTION Vladimir Hlasny Working Paper 90 March, 2020 The CEQ Working Paper Series The CEQ Institute at Tulane University works to reduce inequality and poverty through rigorous tax and benefit incidence analysis and active engagement with the policy community. The studies published in the CEQ Working Paper series are pre-publication versions of peer-reviewed or scholarly articles, book chapters, and reports produced by the Institute. The papers mainly include empirical studies based on the CEQ methodology and theoretical analysis of the impact of fiscal policy on poverty and inequality. The content of the papers published in this series is entirely the responsibility of the author or authors. Although all the results of empirical studies are reviewed according to the protocol of quality control established by the CEQ Institute, the papers are not subject to a formal arbitration process. Moreover, national and international agencies often update their data series, the information included here may be subject to change. For updates, the reader is referred to the CEQ Standard Indicators available online in the CEQ Institute’s website www.commitmentoequity.org/datacenter. The CEQ Working Paper series is possible thanks to the generous support of the Bill & Melinda Gates Foundation. For more information, visit www.commitmentoequity.org. The CEQ logo is a stylized graphical representation of a Lorenz curve for a fairly unequal distribution of income (the bottom part of the C, below the diagonal) and a concentration curve for a very progressive transfer (the top part of the C).
    [Show full text]
  • Ebookdistributions.Pdf
    DOWNLOAD YOUR FREE MODELRISK TRIAL Adapted from Risk Analysis: a quantitative guide by David Vose. Published by John Wiley and Sons (2008). All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. If you notice any errors or omissions, please contact [email protected] Referencing this document Please use the following reference, following the Harvard system of referencing: Van Hauwermeiren M, Vose D and Vanden Bossche S (2012). A Compendium of Distributions (second edition). [ebook]. Vose Software, Ghent, Belgium. Available from www.vosesoftware.com . Accessed dd/mm/yy. © Vose Software BVBA (2012) www.vosesoftware.com Updated 17 January, 2012. Page 2 Table of Contents Introduction .................................................................................................................... 7 DISCRETE AND CONTINUOUS DISTRIBUTIONS.......................................................................... 7 Discrete Distributions .............................................................................................. 7 Continuous Distributions ........................................................................................
    [Show full text]