Cocycle growth for the Steinberg representation THÈSE NO 6599 (2016) PRÉSENTÉE LE 26 FÉVRIER 2016 À LA FACULTÉ DES SCIENCES DE BASE CHAIRE DE THÉORIE ERGODIQUE ET GÉOMÉTRIQUE DES GROUPES PROGRAMME DOCTORAL EN MATHÉMATIQUES ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Thibaut DUMONT acceptée sur proposition du jury: Prof. K. Hess Bellwald, présidente du jury Prof. N. Monod, directeur de thèse Prof. B. Klingler, rapporteur Dr Y. de Cornulier, rapporteur Prof. D. Testerman, rapporteuse Suisse 2016 Amafamille.` Thibaut Dumont Ecole´ polytechnique f´ed´eralede Lausanne, 1015 Lausanne, Switzerland. E-mail :
[email protected] Url : math.dumont.ch 2010 Mathematics Subject Classification.—20J06, 22E41, 20E42. The author was supported by the Advanced Grant 267635 Rigidity of the European Research Council attributed to Prof. Nicolas Monod, and by the Swiss Confederation. COCYCLE GROWTH FOR THE STEINBERG REPRESENTATION Thibaut Dumont Abstract.— This thesis investigates the growth of the natural cocycle introduced by Klingler for the Steinberg representation. When possible, we extend the framework of simple algebraic groups over a local field to arbitrary Euclidean buildings. In rank one, the growth of the cocycle is determined to be sublinear. In higher rank, the complexity of the problem leads us to study the geometry of A2 buildings, where we describe in detail the relative position of three points. Key words and phrases.—Group theory, cohomology, continuous cohomology, building, Stein- berg representation. R´esum´e.— Cette th`ese ´etudie la croissance du cocycle naturel pour le module de Steinberg. Nous ´etendons les travaux de Klingler dans le cas des groups alg´ebriques simples sur un corps local aux immeubles euclidiens lorsque cela est possible.