Improving the Efficiency of Big Forensic Data Analysis Using Nosql
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Digital Data Archive and Preservation in the Cloud – What to Do and What Not to Do 2 © 2013 Storage Networking Industry Association
DigitalPRESENTATION Data Archive TITLE and GOES PreservationHERE in the Cloud - What To Do and What Not To Do Chad Thibodeau / Cleversafe Sebastian Zangaro / HP SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted. Member companies and individual members may use this material in presentations and literature under the following conditions: Any slide or slides used must be reproduced in their entirety without modification The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations. This presentation is a project of the SNIA Education Committee. Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney. The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information. NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK. Digital Data Archive and Preservation in the Cloud – What to do and What Not to Do 2 © 2013 Storage Networking Industry Association. All Rights Reserved. 2 Abstract Cloud Archive Challenges and Best Practices This session will appeal to Storage Vendors, Datacenter Managers, Developers, and those seeking a basic understanding of how best to implement a Cloud Storage Digital Data Archive and Cloud Storage Digital Data Preservation service. -
Comparing Tape and Cloud Storage for Long-Term Data Preservation 1
Comparing Tape and Cloud Storage for Long-Term Data Preservation November 2018 Table of Contents Abstract ......................................................................................................................................................... 2 Introduction .................................................................................................................................................. 2 Perceptions of Leading Edge Technology ..................................................................................................... 2 Reliability ....................................................................................................................................................... 3 Security ......................................................................................................................................................... 4 Speed ............................................................................................................................................................ 5 Storing Data .............................................................................................................................................. 5 Retrieving Data ......................................................................................................................................... 6 Data Growth .................................................................................................................................................. 6 Redundancy ............................................................................................................................................. -
Response by the Polar Data Community to the OGC Request for Information on Arctic Spatial Data
Response to the Open Geospatial Consortium Request for Information on Arctic Spatial Data by the Polar Data Community March 24, 2016 Overview The polar data community welcomes the recent Request for Information (RFI) on Arctic spatial data interoperability and infrastructure issued by the Open Geospatial Consortium (OGC). The OGC’s interest in this topic is timely since, as we will discuss below: . The polar regions are of increasing interest to the whole world as a result of their linkage to global climate systems, opportunities for economic development, geo-political strategic importance, and their environmental importance as homes to Indigenous populations and other residents and sensitive ecosystems. Polar data are required by the scientific community and residents to support research on topics such as climate, atmosphere, land, oceans, ecosystems, ice and snow, permafrost, and social systems; and by the operations community to support impact assessments, engineering design, safe navigation and operations, risk management, emergency response, weather forecasting, and climate change adaptation. These activities contribute to environmental protection, heritage preservation, economic development, safety of life and property, and national sovereignty. The polar data community is well organized and is pursuing activities to improve data management for all of the diverse members of the polar community. Polar data infrastructure is evolving from a system where data are discovered in data catalogues and downloaded to the local machines of users, to a system of distributed data made interoperable using standards and providing users with storage and computational capacity close to large repositories of data. Indigenous Peoples of the Arctic and their representative organizations are increasingly active in using information and communications technologies (ICT) to access data and share their information and knowledge. -
Backups, Archives & Data Preservation
Protecting Your Data: Backups, Archives & Data Preservation DataONE Community Engagement & Outreach Working Group Lesson Topics Key Digital Preservation Concepts Backups: Things to Consider Data Preservation Recommended Practices Learning Objectives After completing this lesson, the participant will be able to: Define the differences between backups and archiving data Identify significant issues related to data backups Identify why backup plans are important and how they can fit into larger backup procedures Discuss what data preservation covers List several recommended practices The DataONE Data Life Cycle Data Protection, Backups, Archiving, Preservation Differences at a Glance Data Protection Includes topics such as: backups, archives, & preservation; also includes physical security, encryption, and others not addressed here More information about these topics can be found in the “References” section Data Protection, Backups, Archiving, Preservation (continued) Terms “backups” and “archives” are often used interchangeably, but do have different meanings Backups: copies of the original file are made before the original is overwritten Archives: preservation of the file Data Preservation Includes archiving in addition to processes such as data rescue, data reformatting, data conversion, metadata A Closer Look: Backups vs. Archiving Backups Used to take periodic snapshots of data in case the current version is destroyed or lost Backups are copies of files stored for short or near-long-term Often performed on a somewhat frequent schedule -
Research Data Management in Canada: a Backgrounder
Research Data Management in Canada: A Backgrounder July 18, 2019 Based on a report produced for Innovation, Science and Economic Development (ISED) by the Canadian Association for Research Libraries (CARL), Consortia Advancing Standards in Research Administration Information (CASRAI), Leadership Council for Digital Research Infrastructure (LCDRI), Research Data Canada (RDC). Contributors: David Baker, Donna Bourne-Tyson, Laura Gerlitz, Susan Haigh, Shahira Khair, Mark Leggott, Jeff Moon, Chantel Ridsdale, Robbin Tourangeau, Martha Whitehead DOI: 10.5281/zenodo.3341596 1 Table of Contents Table of Contents Introduction Definitions Background to the Document The Research Lifecycle and RDM Functions Plan Create Process Analyze Disseminate Preserve Reuse Store Discover Document and Curate Secure The Continuum of Research Data Storage Cost Effectiveness Risk Mitigation Regional Talent Development The Impact of Good Research Data Management Growth in Data Production Trends Driving RDM Initiatives Journal publishers Funding Agencies Researchers The Canadian Landscape Local Provincial/Regional National Traditional Knowledge and Ways of Knowing The International Landscape 2 International Other Contributors Challenges and Opportunities Current Opportunities for RDM in Canada What are the Current Challenges for RDM in Canada? A National Vision Vision Principles Goals Selective Bibliography Canadian International United Kingdom United States 3 Introduction Digital research infrastructure is transforming the practice of research by enabling the rapid -
USGS Guidelines for the Preservation of Digital Scientific Data
April 2014 USGS Guidelines for the Preservation of Digital Scientific Data Introduction This document provides guidelines for use by USGS scientists, management, and IT staff in technical evaluation of systems for preserving digital scientific data. These guidelines will assist in selecting, specifying, building, operating, or enhancing data repositories. The USGS Fundamental Science Practices Advisory Committee – Data Preservation Subcommittee developed these guidelines based on material from the Library of Congress-sponsored National Digital Stewardship Alliance (National Digital Stewardship Alliance, 2013). This document does not cover additional non-technical issues such as preservation policies, funding, or organizational competency and longevity, which are critical for data preservation, but beyond the scope of this document. More information about this topic can be found in Trustworthy Repositories Audit & Certification: Criteria and Checklist (OCLC-NARA, 2007)1. When considering how to preserve digital data you should address these questions: • Where are the data stored? • Do you store a copy of the data off-site? • How do you ensure the integrity of the data over time? • What IT security features does USGS require for storing and accessing the data? • What additional IT security features do you need? • What metadata standard should be used to document the data? • What sustainable file formats should be used for long-term storage? • What are the applicable USGS rules regarding record retention periods for the data?2 • Who can you ask for assistance? USGS Digital Science Data Preservation Guidelines Page 1 April 2014 Table Element Definitions Each row in the table below represents a technical element of digital data preservation. • Storage & Geographic Location – Storage systems, locations, and multiple copies to prevent loss of data. -
Integrating Dataverse and Archivematica for Research Data Preservation
INTEGRATING DATAVERSE AND ARCHIVEMATICA FOR RESEARCH DATA PRESERVATION Meghan Goodchild Grant Hurley Scholars Portal & Scholars Portal Queen’s University Canada Canada [email protected] [email protected] ORCID 0000-0003-0172-4847 ORCID 0000-0001-7988-8046 Abstract – Scholars Portal sponsored Artefactual province of Ontario, Canada.1 Founded in 2002, Systems Inc. to develop the ability for the Scholars Portal is supported by OCUL members and preservation processing tool Archivematica to receive operated under a service agreement with the packages from Dataverse, a popular tool for University of Toronto Libraries. Our services uploading, curating, and accessing research data. The support both research data management via a integration was released as part of Archivematica 1.8 2 in 2018. This paper situates the integration project in hosted, multi-institutional instance of Dataverse 3 the broader context of research data preservation; and digital preservation services via Permafrost, a describes the scope and history of the project and the hosted Archivematica-based service that pairs with features and functionalities of the current release; the OCUL Ontario Library Research Cloud (OLRC) for and concludes with a discussion of the potential for preservation storage.4 The Dataverse-Archivematica future developments to meet additional use cases, integration project was initially undertaken as a service models and preservation approaches for research initiative to explore how research data research data. preservation aims might functionally be achieved Keywords – research data; Archivematica; using Dataverse and Archivematica together. The preservation pipeline; Dataverse Conference Topics – collaboration; technical results of a proof-of-concept phase were developed infrastructure into a working integration released as part of Archivematica version 1.8 in November 2018. -
Preserving Transactional Data and the Accompanying Challenges Facing Companies and Institutions That Aim to Re-Use These Data for Analysis Or Research
01000100 01010000 Preserving 01000011 Transactional 01000100 Data 01010000 Sara Day Thomson 01000011 01000100 DPC Technology Watch Report 16-02 May 2016 01010000 01000011 01000100 01010000 Series editors on behalf of the DPC Charles Beagrie Ltd. 01000011 Principal Investigator for the Series Neil Beagrie 01000100 01010000 This report was supported by the Economic and Social Research Council [grant number ES/JO23477/1] 01000011 © Digital Preservation Coalition 2016 and Sara Day Thomson 2016 Contributing Authors for Section 9 Technical Solutions: Preserving Databases Bruno Ferreira, Miguel Ferreira, and Luís Faria, KEEP SOLUTIONS and José Carlos Ramalho, University of Minho ISSN: 2048-7916 DOI: http://dx.doi.org/10.7207/twr16-02 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without prior permission in writing from the publisher. The moral rights of the author have been asserted. First published in Great Britain in 2016. Foreword The Digital Preservation Coalition (DPC) is an advocate and catalyst for digital preservation, ensuring our members can deliver resilient long-term access to digital content and services. It is a not-for-profit membership organization whose primary objective is to raise awareness of the importance of the preservation of digital material and the attendant strategic, cultural and technological issues. It supports its members through knowledge exchange, capacity building, assurance, advocacy and partnership. The DPC’s vision is to make our digital memory accessible tomorrow. The DPC Technology Watch Reports identify, delineate, monitor and address topics that have a major bearing on ensuring our collected digital memory will be available tomorrow. -
Forensic Toolkit (FTK)
Forensic Toolkit (FTK) User Guide | 1 AccessData Legal and Contact Information Document date: January 31, 2018 Legal Information ©2018 AccessData Group, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of the publisher. AccessData Group, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, AccessData Group, Inc. reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. Further, AccessData Group, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, AccessData Group, Inc. reserves the right to make changes to any and all parts of AccessData software, at any time, without any obligation to notify any person or entity of such changes. You may not export or re-export this product in violation of any applicable laws or regulations including, without limitation, U.S. export regulations or the laws of the country in which you reside. AccessData Group, Inc. 588 West 400 South Suite 350 Lindon, UT 84042 USA AccessData Trademarks and Copyright Information The following are either registered trademarks or trademarks of AccessData Group, Inc. All other trademarks are the property of their respective owners. AccessData® AD Summation® Mobile Phone Examiner Plus® AccessData Certified Examiner® (ACE®) Discovery Cracker® MPE+ Velocitor™ AD AccessData™ Distributed Network Attack® Password Recovery Toolkit® AD eDiscovery® DNA® PRTK® AD RTK™ Forensic Toolkit® (FTK®) Registry Viewer® LawDrop® Summation® | 2 A trademark symbol (®, ™, etc.) denotes an AccessData Group, Inc. -
Performance of Android Forensics Data Recovery Tools
This is author accepted copy; for final version please refer to: B.C. Ogazi-Onyemaechi, Ali Dehghantanha, Kim-Kwang Raymond Choo, “Performance of Android Forensics Data Recovery Tools”, Pages 91-110, Chapter 7, (Elsevier) Contemporary Digital Forensic Investigations Of Cloud And Mobile Applications Performance of Android Forensics Data Recovery Tools Bernard Chukwuemeka Ogazi-Onyemaechi1, Ali Dehghantanha1; Kim-Kwang Raymond Choo2 1School of Computing, Science and Engineering, University of Salford, Manchester, United Kingdom 2 Information Assurance Research Group, University of South Australia, Australia [email protected]; [email protected]; [email protected] Abstract- Recovering deleted or hidden data is among most important duties of forensics investigators. Extensive utilisation of smartphones as subject, objects or tools of crime made them an important part of residual forensics. This chapter investigates the effectiveness of mobile forensic data recovery tools in recovering evidences from a Samsung Galaxy S2 i9100 Android phone. We seek to determine the amount of data that could be recovered using Phone image carver, Access data FTK, Foremost, Diskdigger, and Recover My File forensic tools. The findings reflected the difference between recovery capacities of studied tools showing their suitability in their specialised contexts only. Keywords: Data recovery, digital forensics, deleted file recovery, mobile forensics, Android forensics. 1 1.0 INTRODUCTION Smart mobile devices, particularly smartphones, are increasingly popular in today’s Internet-connected society (1–4). For example, few years ago in 2010, shipments of smartphone grew by 74 percent to 295 million units (3,4). Unsurprisingly, sales of smartphones have been increasing since then (5,6), and it has been estimated that 1.5 billion smartphones will be sold by 2017 and 1 billion mobile subscribers by 2022 (7–15). -
A DIY Approach to Digital Preservation
Practical Digital Solutions: A DIY Approach to Digital Preservation by Tyler McNally A Thesis Submitted to the Faculty of Graduate Studies of the University of Manitoba In Partial Fulfillment of the Requirements of the Degree of MASTER OF ARTS Department of History (Archival Studies) Joint Masters Program University of Manitoba/University of Winnipeg Winnipeg, Manitoba Copyright © 2018 by Tyler McNally Table of Contents Abstract…………………………………………………………...i AcknoWledgments…………………………………………….ii Acronym IndeX…………………………………………………iii Introduction……………………………………………………..1 Chapter 1………………………………………………………….12 Chapter 2………………………………………………………….54 Chapter 3………………………………………………………….81 Conclusion ……………………………………………………….116 Bibliography……………………………………………………..125 iii Abstract Since the introduction of computers, archivists have had to find ways to deal with digital records. As more records are born digital (created through digital means) and digital technologies become more entrenched in hoW data is created and processed, it is imperative that archivists properly preserve these records. This thesis seeks to propose one possible solution to this issue. Rather than advocate for paid solutions or electronic record management systems, it advocates for more practical in-house DIY solutions. The first chapter lays out background information and the historiography of digital archiving in Canada at the federal level. The second chapter moves step-by-step through a Workflow developed at the University of Manitoba’s Faculty of Medicine Archives that lays out one possible DIY style solution. The third chapter is an audit of the WorkfloW from the second chapter against three important international standards for preserving digital information. iv Acknowledgments I would like to acknoWledge and thank Professors Thomas Nesmith and Greg Bak. Their role as professors of the Archival Studies program has been a great source of support and inspiration as well as their knowledge and passion for both archives and their students. -
Taxonomy of Digital Forensics: Investigation Tools and Challenges
Taxonomy of Digital Forensics: Investigation Tools and Challenges Nikita Rana1, Gunjan Sansanwal1, Kiran Khatter1,2 and Sukhdev Singh1,2 1Department of Computer Science and Engineering Manav Rachna International University, Faridabad-121004, India 2Accendere Knowledge Management Services Pvt. Ltd., India Abstract In today’s world of computers, any kind of information can be made available within few clicks for different endeavours. The information may be tampered by changing the statistical properties and can be further used for criminal activities. These days, Cybercrimes are happening at a very large scale, and possess big threats to the security of an individual, firm, industry and even to developed countries. To combat such crimes, law enforcement agencies and investment institutions are incorporating supportive examination policies, procedures and protocols to address the complete investigation process. The paper entails a detailed review of several cybercrimes followed by various digital forensics processes involved in the cybercrime investigation. Further various digital forensics tools with detail explanation are discussed with their advantages, disadvantages, challenges, and drawbacks. A comparison among all the selected tools is also presented. Finally the paper recommends the need of training programs for the first responder and judgement of signature based image authentication. 1. INTRODUCTION Computer is a masterpiece made by the human race that has made our lives smooth and effortless. Computers have become the very bedrock of today’s technological environment and we use them in almost every aspect of our customary life. They are everywhere from shopping, banking to school and hospitals, even our own homes. Businesses depend on these devices and the Internet to do their daily transactions, marketing and communications across the globe and given to our desideratum to have the best of everything it has seen noteworthy diversifications.