DIVISION E SOLAR ACTIVITY COMMISSION 2 1. Introduction 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
→ Investigating Solar Cycles a Soho Archive & Ulysses Final Archive Tutorial
→ INVESTIGATING SOLAR CYCLES A SOHO ARCHIVE & ULYSSES FINAL ARCHIVE TUTORIAL SCIENCE ARCHIVES AND VO TEAM Tutorial Written By: Madeleine Finlay, as part of an ESAC Trainee Project 2013 (ESA Student Placement) Tutorial Design and Layout: Pedro Osuna & Madeleine Finlay Tutorial Science Support: Deborah Baines Acknowledgements would like to be given to the whole SAT Team for the implementation of the Ulysses and Soho archives http://archives.esac.esa.int We would also like to thank; Benjamín Montesinos, Department of Astrophysics, Centre for Astrobiology (CAB, CSIC-INTA), Madrid, Spain for having reviewed and ratified the scientific concepts in this tutorial. CONTACT [email protected] [email protected] ESAC Science Archives and Virtual Observatory Team European Space Agency European Space Astronomy Centre (ESAC) Tutorial → CONTENTS PART 1 ....................................................................................................3 BACKGROUND ..........................................................................................4-5 THE EXPERIMENT .......................................................................................6 PART 1 | SECTION 1 .................................................................................7-8 PART 1 | SECTION 2 ...............................................................................9-11 PART 2 ..................................................................................................12 BACKGROUND ........................................................................................13-14 -
Helioseismology of the Tachocline
HISTORY OF SOLAR ACTIVITY RECORDED IN POLAR ICE Helioseismology of the Tachocline arkus Roth $iepenheuer-Institut für Sonnen%hysi" History of Solar Acti(ity Reco!)e) in Polar Ice Düben)orf, ,-.,,./0,1 HISTORY OF Theoretical Kno2ledge abo#t SOLAR ACTIVITY RECORDED IN the Solar Interio! POLAR ICE What is the structure of the Sun? Theo!y of the inte!nal st!#ct#!e of the sta!s is *ase) on the f#n)amental %!inci%les of %hysics: Energy conservation, Mass conservation, Momentum conservation P!essu!e an) gra(ity a!e in *alance4 hy)!ostatic e5#ili*!i#m 6 the Sun is stable A theo!etical mo)el of the S#n can *e *#ilt on these %hysical la2s. Is there a possibility to „look inside“ the Sun? HISTORY OF SOLAR ACTIVITY RECORDED IN Oscillations in the Sun and the Sta!s POLAR ICE The Sun and the stars exhibit resonance oscillations! Excitation Mechanism: Small perturbations of the equilibrium lead to oscillations Origin: Granulation (turbulences) that generate sound waves, i.e. pressure perturbations (430.5 nm; courtesy to KIS -) 5 Mm HISTORY OF SOLAR ACTIVITY RECORDED IN Oscillations in the Sun and the Sta!s POLAR ICE The Sun and the stars exhibit resonance oscillations! Excitation Mechanism: Small perturbations of the equilibrium lead to oscillations Origin: Granulation (turbulences) that generate sound waves, i.e. pressure perturbations The superposition of sound waves lead to interferences: amplifications or annihilations. Sun and stars act as resonators ? Fundamental mode and higher harmonics are possible Roth, 2004, SuW 8, 24 10 million10 oscillations, -
A Spectral Solar/Climatic Model H
A Spectral Solar/Climatic Model H. PRESCOTT SLEEPER, JR. Northrop Services, Inc. The problem of solar/climatic relationships has prove our understanding of solar activity varia- been the subject of speculation and research by a tions have been based upon planetary tidal forces few scientists for many years. Understanding the on the Sun (Bigg, 1967; Wood and Wood, 1965.) behavior of natural fluctuations in the climate is or the effect of planetary dynamics on the motion especially important currently, because of the pos- of the Sun (Jose, 1965; Sleeper, 1972). Figure 1 sibility of man-induced climate changes ("Study presents the sunspot number time series from of Critical Environmental Problems," 1970; "Study 1700 to 1970. The mean 11.1-yr sunspot cycle is of Man's Impact on Climate," 1971). This paper well known, and the 22-yr Hale magnetic cycle is consists of a summary of pertinent research on specified by the positive and negative designation. solar activity variations and climate variations, The magnetic polarity of the sunspots has been together with the presentation of an empirical observed since 1908. The cycle polarities assigned solar/climatic model that attempts to clarify the prior to that date are inferred from the planetary nature of the relationships. dynamic effects studied by Jose (1965). The sun- The study of solar/climatic relationships has spot time series has certain important characteris- been difficult to develop because of an inadequate tics that will be summarized. understanding of the detailed mechanisms respon- sible for the interaction. The possible variation of Secular Cycles stratospheric ozone with solar activity has been The sunspot cycle magnitude appears to in- discussed by Willett (1965) and Angell and Kor- crease slowly and fall rapidly with an. -
On a Transition from Solar-Like Coronae to Rotation-Dominated Jovian-Like
On a transition from solar-like coronae to rotation-dominated jovian-like magnetospheres in ultracool main-sequence stars Carolus J. Schrijver Lockheed Martin Advanced Technology Center, 3251 Hanover Street, Palo Alto, CA 94304 [email protected] ABSTRACT For main-sequence stars beyond spectral type M5 the characteristics of magnetic activity common to warmer solar-like stars change into the brown-dwarf domain: the surface magnetic field becomes more dipolar and the evolution of the field patterns slows, the photospheric plasma is increasingly neutral and decoupled from the magnetic field, chromospheric and coronal emissions weaken markedly, and the efficiency of rotational braking rapidly decreases. Yet, radio emission persists, and has been argued to be dominated by electron-cyclotron maser emission instead of the gyrosynchrotron emission from warmer stars. These properties may signal a transition in the stellar extended atmosphere. Stars warmer than about M5 have a solar-like corona and wind-sustained heliosphere in which the atmospheric activity is powered by convective motions that move the magnetic field. Stars cooler than early-L, in contrast, may have a jovian- like rotation-dominated magnetosphere powered by the star’s rotation in a scaled-up analog of the magnetospheres of Jupiter and Saturn. A dimensional scaling relationship for rotation-dominated magnetospheres by Fan et al. (1982) is consistent with this hypothesis. Subject headings: stars: magnetic fields — stars: low-mass, brown dwarfs — stars: late-type — planets and satellites: general arXiv:0905.1354v1 [astro-ph.SR] 8 May 2009 1. Introduction Main sequence stars have a convective envelope around a radiative core from about spectral type A2 (with an effective temperature of Teff ≈ 9000 K) to about M3 (Teff ≈ 3200 K). -
Perspective Helioseismology
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 5356–5359, May 1999 Perspective Helioseismology: Probing the interior of a star P. Demarque* and D. B. Guenther† *Department of Astronomy, Yale University, New Haven, CT 06520-8101; and †Department of Astronomy and Physics, Saint Mary’s University, Halifax, Nova Scotia, Canada B3H 3C3 Helioseismology offers, for the first time, an opportunity to probe in detail the deep interior of a star (our Sun). The results will have a profound impact on our understanding not only of the solar interior, but also neutrino physics, stellar evolution theory, and stellar population studies in astrophysics. In 1962, Leighton, Noyes and Simon (1) discovered patches of in the radial eigenfunction. In general low-l modes penetrate the Sun’s surface moving up and down, with a velocity of the more deeply inside the Sun: that is, have deeper inner turning order of 15 cmzs21 (in a background noise of 330 mzs21!), with radii than higher l-valued p-modes. It is this property that gives periods near 5 minutes. Termed the ‘‘5-minute oscillation,’’ the p-modes remarkable diagnostic power for probing layers of motions were originally believed to be local in character and different depth in the solar interior. somehow related to turbulent convection in the solar atmo- The cut-away illustration of the solar interior (Fig. 2 Left) sphere. A few years later, Ulrich (2) and, independently, shows the region in which p-modes propagate. Linearized Leibacher and Stein (3) suggested that the phenomenon is theory predicts (2, 4) a characteristic pattern of the depen- global and that the observed oscillations are the manifestation dence of the eigenfrequencies on horizontal wavelength. -
Multi-Spacecraft Analysis of the Solar Coronal Plasma
Multi-spacecraft analysis of the solar coronal plasma Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Iulia Ana Maria Chifu aus Bukarest, Rumänien eingereicht am: 11.02.2015 Disputation am: 07.05.2015 1. Referent: Prof. Dr. Sami K. Solanki 2. Referent: Prof. Dr. Karl-Heinz Glassmeier Druckjahr: 2016 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. Dissertation an der Technischen Universität Braunschweig, Fakultät für Elektrotechnik, Informationstechnik, Physik ISBN uni-edition GmbH 2016 http://www.uni-edition.de © Iulia Ana Maria Chifu This work is distributed under a Creative Commons Attribution 3.0 License Printed in Germany Vorveröffentlichung der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Elektrotech- nik, Informationstechnik, Physik, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen • Mierla, M., Chifu, I., Inhester, B., Rodriguez, L., Zhukov, A., 2011, Low polarised emission from the core of coronal mass ejections, Astronomy and Astrophysics, 530, L1 • Chifu, I., Inhester, B., Mierla, M., Chifu, V., Wiegelmann, T., 2012, First 4D Recon- struction of an Eruptive Prominence -
The Sun and the Solar Corona
SPACE PHYSICS ADVANCED STUDY OPTION HANDOUT The sun and the solar corona Introduction The Sun of our solar system is a typical star of intermediate size and luminosity. Its radius is about 696000 km, and it rotates with a period that increases with latitude from 25 days at the equator to 36 days at poles. For practical reasons, the period is often taken to be 27 days. Its mass is about 2 x 1030 kg, consisting mainly of hydrogen (90%) and helium (10%). The Sun emits radio waves, X-rays, and energetic particles in addition to visible light. The total energy output, solar constant, is about 3.8 x 1033 ergs/sec. For further details (and more accurate figures), see the table below. THE SOLAR INTERIOR VISIBLE SURFACE OF SUN: PHOTOSPHERE CORE: THERMONUCLEAR ENGINE RADIATIVE ZONE CONVECTIVE ZONE SCHEMATIC CONVECTION CELLS Figure 1: Schematic representation of the regions in the interior of the Sun. Physical characteristics Photospheric composition Property Value Element % mass % number Diameter 1,392,530 km Hydrogen 73.46 92.1 Radius 696,265 km Helium 24.85 7.8 Volume 1.41 x 1018 m3 Oxygen 0.77 Mass 1.9891 x 1030 kg Carbon 0.29 Solar radiation (entire Sun) 3.83 x 1023 kW Iron 0.16 Solar radiation per unit area 6.29 x 104 kW m-2 Neon 0.12 0.1 on the photosphere Solar radiation at the top of 1,368 W m-2 Nitrogen 0.09 the Earth's atmosphere Mean distance from Earth 149.60 x 106 km Silicon 0.07 Mean distance from Earth (in 214.86 Magnesium 0.05 units of solar radii) In the interior of the Sun, at the centre, nuclear reactions provide the Sun's energy. -
Solar Wind Variation with the Cycle I. S. Veselovsky,* A. V. Dmitriev
J. Astrophys. Astr. (2000) 21, 423–429 Solar Wind Variation with the Cycle I. S. Veselovsky,* A. V. Dmitriev, A. V. Suvorova & M. V. Tarsina, Institute of Nuclear Physics, Moscow State University, 119899 Moscow, Russia. *e-mail: [email protected] Abstract. The cyclic evolution of the heliospheric plasma parameters is related to the time-dependent boundary conditions in the solar corona. “Minimal” coronal configurations correspond to the regular appearance of the tenuous, but hot and fast plasma streams from the large polar coronal holes. The denser, but cooler and slower solar wind is adjacent to coronal streamers. Irregular dynamic manifestations are present in the corona and the solar wind everywhere and always. They follow the solar activity cycle rather well. Because of this, the direct and indirect solar wind measurements demonstrate clear variations in space and time according to the minimal, intermediate and maximal conditions of the cycles. The average solar wind density, velocity and temperature measured at the Earth's orbit show specific decadal variations and trends, which are of the order of the first tens per cent during the last three solar cycles. Statistical, spectral and correlation characteristics of the solar wind are reviewed with the emphasis on the cycles. Key words. Solar wind—solar activity cycle. 1. Introduction The knowledge of the solar cycle variations in the heliospheric plasma and magnetic fields was initially based on the indirect indications gained from the observations of the Sun, comets, cosmic rays, geomagnetic perturbations, interplanetary scintillations and some other ground-based methods. Numerous direct and remote-sensing space- craft measurements in situ have continuously broadened this knowledge during the past 40 years, which can be seen from the original and review papers. -
Dynamics of the Fast Solar Tachocline
A&A 389, 629–640 (2002) Astronomy DOI: 10.1051/0004-6361:20020586 & c ESO 2002 Astrophysics Dynamics of the fast solar tachocline I. Dipolar field E. Forg´acs-Dajka1 and K. Petrovay1,2 1 E¨otv¨os University, Department of Astronomy, Budapest, Pf. 32, 1518 Hungary 2 Instute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030, USA Received 15 January 2002 / Accepted 16 April 2002 Abstract. One possible scenario for the origin of the solar tachocline, known as the “fast tachocline”, assumes that the turbulent diffusivity exceeds η ∼> 109 cm2 s−1. In this case the dynamics will be governed by the dynamo- generated oscillatory magnetic field on relatively short timescales. Here, for the first time, we present detailed numerical models for the fast solar tachocline with all components of the magnetic field calculated explicitly, assuming axial symmetry and a constant turbulent diffusivity η and viscosity ν. We find that a sufficiently strong oscillatory poloidal field with dipolar latitude dependence at the tachocline–convective zone boundary is able to confine the tachocline. Exploring the three-dimensional parameter space defined by the viscosity in the range log ν = 9–11, the magnetic Prandtl number in the range Prm =0.1−10, and the meridional flow amplitude −1 (−3to+3cms ), we also find that the confining field strength Bconf, necessary to reproduce the observed thickness of the tachocline, increases with viscosity ν, with magnetic Prandtl number ν/η, and with equatorward 3 4 meridional flow speed. Nevertheless, the resulting Bconf values remain quite reasonable, in the range 10 −10 G, for all parameter combinations considered here. -
Our Sun Has Spots.Pdf
THE A T M O S P H E R I C R E S E R V O I R Examining the Atmosphere and Atmospheric Resource Management Our Sun Has Spots By Mark D. Schneider Aurora Borealis light shows. If you minima and decreased activity haven’t seen the northern lights for called The Maunder Minimum. Is there actually weather above a while, you’re not alone. The end This period coincides with the our earth’s troposphere that con- of Solar Cycle 23 and a minimum “Little Ice Age” and may be an cerns us? Yes. In fact, the US of sunspot activity likely took place indication that it’s possible to fore- Department of Commerce late last year. Now that a new 11- cast long-term temperature trends National Oceanic and over several decades or Atmospheric Administra- centuries by looking at the tion (NOAA) has a separate sun’s irradiance patterns. division called the Space Weather Prediction Center You may have heard (SWPC) that monitors the about 22-year climate weather in space. Space cycles (two 11-year sun- weather focuses on our sun spot cycles) in which wet and its’ cycles of solar activ- periods and droughts were ity. Back in April of 2007, experienced in the Mid- the SWPC made a predic- western U.S. The years tion that the next active 1918, 1936, and 1955 were sunspot or solar cycle would periods of maximum solar begin in March of this year. forcing, but minimum Their prediction was on the precipitation over parts of mark, Solar Cycle 24 began NASA TRACE PROJECT, OF COURTESY PHOTO the U.S. -
Coronal Mass Ejections and Solar Radio Emissions
CORONAL MASS EJECTIONS AND SOLAR RADIO EMISSIONS N. Gopalswamy∗ Abstract Three types of low-frequency nonthermal radio bursts are associated with coro- nal mass ejections (CMEs): Type III bursts due to accelerated electrons propagating along open magnetic field lines, type II bursts due to electrons accelerated in shocks, and type IV bursts due to electrons trapped in post-eruption arcades behind CMEs. This paper presents a summary of results obtained during solar cycle 23 primarily using the white-light coronagraphic observations from the Solar Heliospheric Ob- servatory (SOHO) and the WAVES experiment on board Wind. 1 Introduction Coronal mass ejections (CMEs) are associated with a whole host of radio bursts caused by nonthermal electrons accelerated during the eruption process. Radio bursts at low frequencies (< 15 MHz) are of particular interest because they are associated with ener- getic CMEs that travel far into the interplanetary (IP) medium and affect Earth’s space environment if Earth-directed. Low frequency radio emission needs to be observed from space because of the ionospheric cutoff (see Fig. 1), although some radio instruments permit observations down to a few MHz [Erickson 1997; Melnik et al., 2008]. Three types of radio bursts are prominent at low frequencies: type III, type II, and type IV bursts, all due to nonthermal electrons accelerated during solar eruptions. The radio emission is thought to be produced by the plasma emission mechanism [Ginzburg and Zheleznyakov, 1958], involving the generation of Langmuir waves by nonthermal electrons accelerated during the eruption and the conversion of Langmuir waves to electromagnetic radiation. Langmuir waves scattered off of ions or low-frequency turbulence result in radiation at the fundamental (or first harmonic) of the local plasma frequency. -
The Flaring and Quiescent Components of the Solar Corona
A&A 488, 1069–1077 (2008) Astronomy DOI: 10.1051/0004-6361:200809355 & c ESO 2008 Astrophysics The flaring and quiescent components of the solar corona C. Argiroffi1,2, G. Peres1,2, S. Orlando2, and F. Reale1,2 1 Dipartimento di Scienze Fisiche ed Astronomiche, Sezione di Astronomia, Università di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy e-mail: [argi;peres;reale]@astropa.unipa.it 2 INAF - Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy e-mail: [email protected] Received 5 January 2008 / Accepted 30 April 2008 ABSTRACT Context. The solar corona is a template to understand stellar activity. The Sun is a moderately active star, and its corona differs from that of active stars: for instance, active stellar coronae have a double-peaked emission measure distribution EM(T) with a hot peak at 8−20 MK, while the non-flaring solar corona has one peak at 1−2 MK and, typically, much cooler plasma. Aims. We study the average contribution of flares to the solar emission measure distribution to investigate indirectly the hypothesis that the hot peak in the EM(T) of active stellar coronae is due to a large number of unresolved solar-like flares, and to infer properties about the flare distribution from nano- to macro-flares. Methods. We measure the disk-integrated time-averaged emission measure, EMF(T), of an unbiased sample of solar flares, analyzing uninterrupted GOES/XRS light curves over time intervals of one month. We obtain the EMQ(T) of quiescent corona for the same time intervals from Yohkoh/SXT data.