Experimental Physics Division

Total Page:16

File Type:pdf, Size:1020Kb

Experimental Physics Division Experimental Physics Division The LEP Programme ALEPH In 2003 the ALEPH Collaboration (Aachen, Annecy, Barcelona, Bari, Beijing, CERN, Clermont-Ferrand, Copenhagen, Demokritos, Ecole Polytechnique, Firenze, Frascati, Glasgow, Haverford College, Heidelberg, Imperial College, Innsbruck, Lancaster, Louvain-la-Neuve, Mainz, Marseille, Milano, MPI München, Orsay, Pisa, RAL, Royal Holloway, Saclay, Santa Cruz, Sheffield, Siegen, Trieste, Washington, Wisconsin, Zurich) completed and published several final physics analyses. The data collected during the life of the experiment and the software developed over many years have been archived to allow long-term analysis of ALEPH data. The final results on the search for the lightest supersymmetric particle (LSP), one of the main candidates for explaining the existence of the dark matter in the universe, have been complemented by a thorough search for stable hadronizing squarks and gluinos. The analysis of event-shape variables and inclusive particle spectra at the highest LEP energies was completed and the energy evolution of the strong coupling constant was studied in detail. The cross-section of the process e+e– → W+W– was measured with high precision. Many interesting results in two-photon physics were published. Overall, 15 papers were published or submitted for publication by ALEPH during 2003. Searches Charginos and Neutralinos were searched for in the data collected at centre-of-mass energies up to 209 GeV. In the many topologies considered, the number of candidates observed was consistent with the background expected from Standard Model processes. An absolute lower limit of 43.1 GeV/c2 was derived on the mass of the LSP, assumed to be the lightest neutralino, in the framework of MSSM and R-parity conservation. The effect of stau mixing was studied in great detail. It was shown that stau mixing would only slightly degrade the above limit. The final 95% CL limit on the LSP mass, as a function of tanβ, is shown in Fig. ALEPH–1. Another important achievement in the search for supersymmetry is the completion of the search for stable hadronizing squarks and gluinos. The final publication presents several searches at the Z pole and higher energies. The existence of LSP gluinos is excluded for masses below 26.9 GeV/c2, finally closing the long-standing low mass gluino window. Down-type (up-type) LSP squarks are excluded for masses below 92 (95) GeV/c2. Stop decaying to gluinos are excluded up to masses of 80 GeV/c2. Experimental Physics Division 5 Fig. ALEPH–1: The 95% CL lower limit on the mass of the lightest neutralino, as a function of tanβ. The dashed curve indicates the limit from chargino searches 2 β alone for m0 = 500 GeV/c . The grey area at small tan shows the improvement obtained if chargino and neutralino searches are combined. The other limits are obtained from (right to left) slepton searches in the corridor, Higgs boson searches in the corridor, chargino searches for large sfermion masses and Higgs boson searches. QCD and the Strong Interaction Coupling Improved tests of QCD have been completed using hadronic final-state observables with data collected at LEP1 and LEP2. The measurements include event shape variables, jet rates, and inclusive charged-particle distributions. Particular attention has been given to the study of the energy evolution of these variables. A large α part of the long paper dedicated to this subject discusses the measurement of s from event shape variables. α Non-perturbative aspects of the determination of s are studied by means of power law techniques, which are α corrections scaling with Q, the four-momentum transfer. The final result is s = 0.1214 ± 0.0048. The energy evolution of the coupling constant is shown in Fig. ALEPH–2. Inclusive and Two-Photon Physics In the area of inclusive physics the publication of a detailed investigation of Bose–Einstein correlations in hadronic Z decays is worth mentioning. The two-pion correlation function is measured in both one and two dimensions, using either unlike-sign or mixed-events reference samples. The results indicate that the correlation radii values depend on the chosen kind of reference sample and on the two-jet purity. 6 Experimental Physics Division α Fig. ALEPH–2: The measurements of the strong coupling constant s between 91.2 and 206 GeV. The results using six different event-shape variables are combined and correlations are taken into account. The inner error bars exclude the perturbative uncertainty, which is expected to be highly correlated between the measurements. The outer error bars indicate the total error. A fit to the three- loop QCD evolution formula using the uncorrelated errors is shown. The year 2003 saw the publication of several results on two-photon physics. Charm production in γγ ∗ ∗ collisions has been measured by selecting events containing D + mesons. The differential D + production has been determined as a function of pseudorapidity and transverse momentum and found to be in agreement with NLO QCD calculations. The exclusive production of pion and kaon meson pairs in two-photon collisions has also been investigated and compared to predictions. The angular distributions of these simple exclusive processes are described by QCD, but the data are found to have a significantly higher normalization. Another important measurement is related to the hadronic structure of the photon, which has been studied in two regions of momentum transfer (〈Q2〉 = 17.3 GeV2, 〈Q2〉 = 63.2 GeV2) using γγ collisions where one of the scattered electrons is detected. Electroweak Physics A precise determination of the W+W– production cross-section, using all of the data collected by ALEPH at LEP2, is ready for publication. Individual cross-sections for the different topologies arising from W decays into leptons and hadrons, as well as the total W-pair cross-section, are measured at ten centre-of-mass energies. The results are found to be in agreement at the one per cent level with recently developed Standard Model calculations. The branching fraction of the W boson into hadrons is measured to be + → BR(W hadrons) = 67.13 ± 0.38 ± 013%, from which the CKM matrix element |Vcs| is determined to be Experimental Physics Division 7 0.958 ± 0.017 ± 0.007. The W+W– cross-section as a function of the centre-of-mass energy is shown in Fig. ALEPH–3. The study of anomalous gauge boson couplings is close to completion. Constraints on the existence of anomalous quartic gauge couplings have been obtained from acoplanar photon pairs, and the results are ready for publication. Finally the long, thorough studies related to the measurement of the W mass are essentially completed, and the final publication is in preparation. Fig. ALEPH–3: Measurement of the W-pair production cross-section as a function of the centre-of-mass energy, compared to Standard Model predictions. DELPHI The DELPHI Collaboration consists of teams from Ames, Amsterdam, Antwerp, Athens, Bergen, Bologna, Bratislava, Brussels, CERN, Cracow, Dubna, Genoa, Grenoble, Helsinki, Karlsruhe, Lisbon, Liverpool, Ljubljana, Lund, Lyon, Marseille, Milan, Mons, Orsay, Oslo, Oxford, Padua, Paris, Prague, Rio de Janeiro, Rome, Rutherford, Saclay, Santander, Serpukhov, Stockholm, Strasbourg, Torino, Trieste, Udine, Uppsala, Valencia, Vienna, Warsaw and Wuppertal. The barrel part of the DELPHI detector is being prepared as a permanent exhibit for CERN visitors. It has been moved to its final position in pit 8, compatible with the spatial arrangement of the LHCb counting houses. A visitor platform has been installed. Several subdetectors are being prepared to allow viewing of internal construction details. It is foreseen to make the detector exhibit available to the public from summer 2004 onwards. During 2003 the DELPHI Collaboration continued the analysis of data collected both at the Z peak (LEP1) and at centre-of-mass energies 161–209 GeV (LEP2). Many analyses were finalized. A total of 15 papers were published or accepted for publication in refereed journals in 2003 and an additional 12 papers were submitted for publication. Out of these, nine papers are based on LEP1 data and covered mainly B and τ physics topics. 8 Experimental Physics Division A further 16 papers are in preparation and it is expected that ongoing analyses will lead to another 25 papers in 2004–2005. A total of 47 contributions were submitted to the 2003 Europhysics Conference on High-Energy Physics in Aachen and the Lepton–Photon Symposium at Fermilab. DELPHI and other LEP results were presented by some 45 DELPHI members at conferences during 2003. Heavy Flavour and τ Physics Using high-performance neural network techniques, precise measurements of B+, B0 and mean b-hadron τ τ lifetimes have been obtained: B+ = 1.624 ± 0.014(stat) ± 0.018(syst) ps, B0 = 1.531 ± 0.021(stat) ± τ + 0.031(syst) ps and b = 1.570 ± 0.005(stat) ± 0.008(syst) ps. The B and average b-hadron lifetime are the most accurate to date. The measurement of the fraction of B+ mesons in a sample of weakly decaying b-hadrons from Zbb→ decays is so far the most precise one: f =±()40.99 0.82(stat) ± 1.11(syst) %. Bu 0 → ∗+l − ν The CKM matrix element |Vcb| has been measured from the decays BDd l using exclusively ∗ reconstructed D + decays. Combining this measurement with a more inclusive measurement, previously published by DELPHI, results in |Vcb| = 0.0414 ± 0.0012(stat) ± 0.0021(syst) ± 0.0018(theor). In the τ sector, the final results on the τ lifetime and on the exclusive and semi-exclusive hadronic branching ratios of final states with up to five (resp. six) hadrons have been submitted for publication. The results are in good agreement with current world averages and have slightly smaller or similar errors compared to measurements from other experiments.
Recommended publications
  • The WITCH Experiment: Towards Weak Interactions Studies. Status And
    Noname manuscript No. (will be inserted by the editor) V.Yu. Kozlov⋆ · M. Beck · S. Coeck · M. Herbane · I.S. Kraev · N. Severijns · F. Wauters · P. Delahaye · A. Herlert · F. Wenander · D. Z´akouck´y · (ISOLDE, NIPNET and TRAPSPEC collaborations) The WITCH Experiment: towards weak interactions studies. Status and prospects Received: date / Accepted: date Abstract Primary goal of the WITCH experiment is to test the Standard Model for a possible ad- mixture of a scalar or tensor type interaction in β-decay. This information will be inferred from the shape of the recoil energy spectrum. The experimental set-up was completed and is under intensive commissioning at ISOLDE (CERN). It combines a Penning trap to store the ions and a retardation spectrometer to probe the recoil ion energy. A brief overview of the WITCH set-up and the results of commissioning tests performed until now are presented. Finally, perspectives of the physics program are reviewed. Keywords Weak interactions · Penning trap · Retardation spectrometer PACS 23.40.Bw · 24.80.+y · 29.25.Rm · 29.30.Ep 1 Introduction The most general interaction Hamiltonian for nuclear β-decay which includes all possible interaction types consistent with Lorentz-invariance [1,2] contains 5 different terms, so-called Scalar (S), Vector (V), Tensor (T), Axial-Vector (A) and Pseudoscalar (P) contributions. The Standard Model (SM) of the weak interaction excepts only V and A interactions which leads to the well-known V − A structure arXiv:nucl-ex/0701007v1 4 Jan 2007 of the weak interaction. However, the presence of scalar and tensor types of weak interaction is today ruled out only to the level of about 8% of the V- and A-interactions [3].
    [Show full text]
  • L'héritage Du LEP
    REVUE INTERNATIONALE DE LA PHYSIQUE DES HAUTES ENERGIES COURRIER Bmffl^ffiffiSKÏfl Br^BfflSIFl^PB SrjffV^BMt'fYt^i L'héritage du LEP M1CROSTRUCTUIES GRAVITATION SUPEiSYlETitlE Des techniques de détection innovantes Progrès dans la course à la détection Le trentième anniversaire du mieux apportent de meilleures performances pl4 des ondes gravitationnelles pl7 gardé des secrete de Punivers pl9 Second Announcement http://www.nss-mic.org Nuclear Science Symposium and mm mm mm ^^^wL j^^^L ^E^ù IMT ITilMliJi ir»BvE Tiltl^llliiMlJiB ^lilMIMiiiBMlIMC! JM^^IiSJlKM \^ 12th International Workshop on Room-Temperature • Year' Semiconductor X- and Gamma-Ray Detectors Town & Country Radiation Detectors * Short Courses Resort and And Electronics: * Oral Presentations Applications in Physics, * Plenary and Parallel Sessions Convention Center Industry» Space * Poster Sessions and Medicine * Workshops San Diego, California * Social Events Physics» Engineering and * Companion Program Mathematical Aspects of November Medical Imaging Abstract Deadlines: April 20,2001 (NSS, MIC, SNPS) 4-10,2001 June 15,2001 (Workshop) IndustrialLïïivttîïSti llll .Kli<\/ïïll>ljisi,l/%Jïïi/ Exhibition ** Los Alamos N&TS0N.&L LABORATORY' NEVADA^ AWZOHAITISI Las VoQas_^r fï~ „j£ffîk^ mfjkSmwÊMÊ u UNlTEj^&TE^^ Bakersfielc Oxnard. Los Angeles" San Diegojj Pacific MëricaJi ^^mm BAJA ICLRC Ocean CALIFORNIA Santa Inès Hermosillo, /AF7V General Chairman: Anthony Lavietes • :$Mj»G imgoms&mcA NUQSARÊ wrence LivcrmoFe National Laboratory 7000 East Avenue L453 Livermore, California 94550 USA ||S9S5|B IMSk ' L"—»tfi*4 I SOMMAIRE L'actualité mondiale en physique des hautes énergies et dans les domaines voisins Le Courrier CERN est distribué aux gouvernements des Etats membres, aux instituts ou laboratoires affiliés au CERN ainsi qu'à tout son personnel.
    [Show full text]
  • Arxiv:0909.3337V2 [Physics.Ins-Det] 3 Oct 2010
    EPJ manuscript No. (will be inserted by the editor) Effect of a sweeping conductive wire on electrons stored in a Penning-like trap between the KATRIN spectrometers M. Beck1, K. Valerius1a, J. Bonn2, K. Essig3, F. Gl¨uck4;5, H.-W. Ortjohann1, B. Ostrick1;2, E. W. Otten2, Th. Th¨ummler3b, M. Zboˇril1;6, and C. Weinheimer1;3 1 Institut f¨urKernphysik, Westf¨alische Wilhelms-Universit¨atM¨unster, Germany 2 Institut f¨urPhysik, Johannes Gutenberg-Universit¨atMainz, Germany 3 Helmholtz-Institut f¨urStrahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universit¨atBonn, Germany 4 Institut f¨urExperimentelle Kernphysik, Karlsruhe Institute of Technology, Germany 5 Res. Inst. Nucl. Part. Phys., Budapest, Hungary 6 Nuclear Physics Institute ASCR, Reˇznearˇ Prague, Czech Republic the date of receipt and acceptance should be inserted later Abstract. The KATRIN experiment is going to search for the mass of the electron antineutrino down to 0:2 eV=c2. In order to reach this sensitivity the background rate has to be understood and minimised to 0:01 counts per second. One of the background sources is the unavoidable Penning-like trap for electrons due to the combination of the electric and magnetic fields between the pre- and the main spectrometer at KATRIN. In this article we will show that by sweeping a conducting wire periodically through such a particle trap stored particles can be removed, an ongoing discharge in the trap can be stopped, and the count rate measured with a detector looking at the trap is reduced. PACS. 14.60.Pq Neutrino mass and mixing { 23.40.-s Beta decay; double beta decay; electron and muon capture { 29.30 Electron spectroscopy { 52.80 Magnetoactive discharges 1 Motivation trometer.
    [Show full text]
  • The WITCH Experiment Status and Perspectives
    The WITCH Experiment status and perspectives Simon van Gorpa N. Severijnsa, Micha¨elTandeckia, E. Traykova, F. Wautersa, M. Beckb, P. Friedagb, C. Weinheimerb, A. Herlertc , F. Wenanderc , V. Yu. Kozlovd Universities of aLeuven, bM¨unster, c CERN and d F.Z.Karlsruhe 17th of November, Isolde Workshop 2008 test The WITCH experiment: status and perspectives > Outline Outline 1 WITCH set-up Motivation Experimental overview 2 `History' of WITCH 124In run - Nov 2006 Offline tests 35Ar run - Oct 2007 3 Discussion of the Issues Bad Vacuum Unwanted Penning traps 4 Independent set-up Magnetic Shielding RFQ for ion source 5 Additional Physics with WITCH Tapestation 6 Conclusion & Outlook Simon van Gorp (IKS - Leuven) Isolde Workshop 2008 17th of November 2 / 19 The WITCH experiment: status and perspectives > WITCH set-up > Motivation Physics motivation Hβ = f (CS ; CV ; CT ; CA; CP ) e.g: Fermi β decay (0+ ! 0+) 2 0 2 v jCS j + jCS j W (θ) ≈ 1 + a cosθ a ≈ 1 − 2 c jCV j Current experimental limits: CS < 7% CV Simon van Gorp (IKS - Leuven) Isolde Workshop 2008 17th of November 3 / 19 The WITCH experiment: status and perspectives > WITCH set-up > Experimental overview Weak Interaction Trap for Charged Particles A Double Penning trap system to prepare the ions acts as a scattering-free source Retardation spectrometer to probe the energy of the recoiling ions Simon van Gorp (IKS - Leuven) Isolde Workshop 2008 17th of November 4 / 19 The WITCH experiment: status and perspectives > WITCH set-up > Experimental overview Retardation spectrometer =) Simon van
    [Show full text]
  • First Detection and Energy Measurement of Recoil Ions
    EPJ manuscript No. (will be inserted by the editor) First detection and energy measurement of recoil ions following beta decay in a Penning trap with the WITCH experiment M. Beck1, S. Coeck2, V.Yu. Kozlov2a, M. Breitenfeld2, P. Delahaye3, P. Friedag1, M. Herbane2, A. Herlert3, I.S. Kraev2, J. Mader1, M. Tandecki2, S. Van Gorp2, F. Wauters2, Ch. Weinheimer1, F. Wenander3, and N. Severijns2 1 Westf¨alische Wilhelms-Universit¨at M¨unster, Institut f¨ur Kernphysik, Wilhelm-Klemm Str. 9, D-48149, M¨unster, Germany 2 K.U.Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200 D, B-3001 Leuven, Belgium 3 Physics Department, CERN, 1211 Geneva 23, Switzerland October 30, 2018 Abstract. The WITCH experiment (Weak Interaction Trap for CHarged particles) will search for exotic interactions by investigating the β-ν angular correlation via the measurement of the recoil energy spectrum after β decay. As a first step the recoil ions from the β− decay of 124In stored in a Penning trap have been detected. The evidence for the detection of recoil ions is shown and the properties of the ion cloud that forms the radioactive source for the experiment in the Penning trap are presented. PACS. 23.40.Bw Weak-interaction and lepton (including neutrino) aspects – 29.30.Aj Charged-particle spectrometers: electric and magnetic – 37.10.Ty ion trapping Key words. Recoil ions; Penning traps; Weak interaction; β decay; Recoil energy spectrum; neutrino electron angular correlation 1 Introduction 2 Experimental set-up Most of the recent β-ν correlation experiments observe the β particle and the recoil nucleus in coincidence (see In the Standard Model description of the weak interac- e.g.
    [Show full text]
  • The WITCH Experiment: Acquiring the First Recoil Ion Spectrum
    The WITCH experiment: Acquiring the first recoil ion spectrum∗ V.Yu. Kozlov 1 a), M. Beck b), S. Coeck a), P. Delahaye c), P. Friedag b), M. Herbane a), A. Herlert c), I.S. Kraev a), M. Tandecki a), S. Van Gorp a), F. Wauters a), Ch. Weinheimer b), F. Wenander c), D. Z´akouck´y d) and N. Severijns a) a) K.U.Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven, Belgium b) Universit¨atM¨unster, Institut f¨urKernphysik, Wilhelm-Klemm-Str. 9, D-48149 M¨unster,Germany c) CERN, CH-1211 Gen`eve23, Switzerland d) Nuclear Physics Institute, ASCR, 250 68 Reˇz,Czechˇ Republic Abstract The standard model of the electroweak interaction describes β-decay in the well-known V-A form. Nevertheless, the most general Hamiltonian of a beta-decay includes also other possible interaction types, e.g. scalar (S) and tensor (T) contributions, which are not fully ruled out yet experimentally. The WITCH experiment aims to study a possible admixture of these exotic interaction types in nuclear β-decay by a precise measurement of the shape of the recoil ion energy spectrum. The experimental set-up couples a double Penning trap system and a retardation spectrometer. The set-up is installed in ISOLDE/CERN and was recently shown to be fully operational. The current status of the experiment is presented together with the data acquired during the 2006 campaign, showing the first recoil ion energy spectrum obtained. The data taking procedure and corresponding data acquisition system are described in more detail. Several further technical improvements are briefly reviewed.
    [Show full text]
  • Progress in Research
    PROGRESS IN RESEARCH April 1, 2006 - March 31, 2007 CYCLOTRON INSTITUTE Texas A&M University College Station, Texas PROGRESS IN RESEARCH APRIL 1, 2006 - MARCH 31, 2007 Prepared By The Cyclotron Institute Staff Texas A&M University College Station, TX 77843-3366 Phone: (979) 845-1411 Fax: (979) 845-1899 Web: http://cyclotron.tamu.edu July 2007 TABLE OF CONTENTS Introduction ............................................................................................................................................... ix R.E. Tribble, Director SECTION I: NUCLEAR STRUCTURE, FUNDAMENTAL INTERACTIONS AND ASTROPHYSICS Giant resonances strength in 28Si ........................................................................................................... I-1 D. H. Youngblood, Y. -W. Lui, and H. L. Clark Folding model analysis for 240 MeV 6Li elastic scattering on 28Si and 24Mg ..................................... I-5 X. Chen, Y. -W. Lui, H. L. Clark, Y. Tokimoto, and D. H. Youngblood Study of the 12N(p,γ)13O reaction from a (12N, 13O) proton transfer reaction................................... I-11 A. Banu, T. Al-Abdullah, V. Burjan, F. Carstoiu, C. Fu, C. A. Gagliardi, M. McCleskey, G. Tabacaru, L. Trache, R. E. Tribble, and Y. Zhai Single and double proton emission from the 14O+4He interaction .................................................... I-15 Changbo Fu, V. Z. Goldberg, A. M. Mukhamedzhanov, G. G. Chubarian, G. V. Rogachev, B. Skorodumov, M. McCleskey, Y. Zhai, T. Al-Abdullah, G. Tabacaru, A. Banu, L. Trache, and R. E. Tribble Decay of 10C excited states above the 2p+2α threshold....................................................................... I-17 R. J. Charity1, K. Mercurio, L. G. Sobotka, J. M. Elson, M. Famiano, A. Banu, C. Fu, L. Trache, and R. E. Tribble Characterization of novel square-bordered position-sensitive silicon detectors with a four-corner readout .............................................................................................................................. I-20 A.
    [Show full text]
  • Book of Abstracts
    SSP2012 - 5th International Symposium on Symmetries in Subatomic Physics Sunday 17 June 2012 - Friday 22 June 2012 Book of Abstracts Contents Lorentz symmetry on trial on beta decay ........................... 1 DARK ENERGY AND QUANTUM GRAVITATION, FROM NEUTRINO OSCILLATIONS . 1 Baryon Charge Condensate Baryogenesis ........................... 1 Lepton Asymmetry and Neutrino Oscillations Interplay ................... 2 The new ultracold neutron source at the Paul Scherrer Institute. .............. 2 A T-odd Momentum Correlation in Radiative Beta-Decay .................. 3 Leptogenesis with small violation of B-L ........................... 3 Detector and measurement of Daya Bay Experiment .................... 3 Flavor Changing Neutral Currents and a Z-prime ...................... 4 Simulation of light antinucleus-nucleus interactions ..................... 4 Branching fractions of B->D(*)taunu and B->taunu at BABAR and implications for new physics ............................................ 5 Direct measurement of time-reversal violation at BABAR .................. 5 Neutron Electric Dipole Moment Experiment at the Paul Scherrer Institute. 6 Test of Time-Reversal Invariance at COSY (TRIC) ...................... 6 Searching for cosmological spatial variations in values of fundamental constants using lab- oratory measurements ................................... 6 Optical transitions in highly charged ions for atomic clocks with enhanced sensitivity to variation of fundamental constants ............................ 7 Physics Prospects for
    [Show full text]
  • Β Decay Studies with the WITCH Experiment
    β decay studies with the WITCH experiment Michaël Tandecki on behalf of the WITCH team: M. Breitenfeldt, S. Van Gorp, E. Traykov , F. Wauters, N. Severijns (K.U.Leuven), M. Beck, P. Friedag, J. Mader, Ch. Weinheimer (Univ. Munster), A. Herlert, F. Wenander (ISOLDE-CERN) , F. Glück, V. Kozlov (FZK Karlsrühe), D. Zakoucky (NPI-Rez, Prague) Overview • Theory • WITCH set-up • Physics program • First results • Conclusion & Outlook Michaël Tandecki - 21/07/2009 Overview • Theory • WITCH set-up • Physics program • First results • Conclusion & Outlook Michaël Tandecki - 21/07/2009 Nuclear beta decay - - n →→→ p + e + νννe βββ - decay + + p →→→ n + e + νννe βββ - decay - p + e →→→ n + νννe Electron Capture Four-fermion contact interaction: In gauge theory: Michaël Tandecki - 21/07/2009 WITCH physics • Weak Interaction Hamiltonian: Standard Model (V-A Int.): C S = C T = C P = 0 C 1)C 1) T ≤ 9% S ≤ 7% 95.5% CL (2 σ) CA CV 1) N. Severijns, M. Beck, O. Naviliat-Cuncic, Rev. Mod. Phys. 78 (2006) 991 Michaël Tandecki - 21/07/2009 Beyond Standard Model (SM) Example : Exchange by leptoquarks: mediated by vector ( X) or scalar ( Y) leptoquarks In gauge theory: (u has charge +2/3e, d has charge -1/3e) Michaël Tandecki - 21/07/2009 Physics principle β-ν correlation 2 ' 2 v CS+ C S W()θ≅ 1 + a cos() θ a ≈1 − 2 c CV Scalar Vector β+ β+ 1 0.8 ν 0.6 V νe e S 0.4 0.2 e.g. Fermi βββ+-decay 0 100 200 300 400 500 Recoil energy (eV) Michaël Tandecki - 21/07/2009 Traps for correlations in nuclear beta decay N.
    [Show full text]
  • Standard Model Tests with Trapped Radioactive Atoms 2
    TOPICAL REVIEW Standard Model tests with trapped radioactive atoms ‡ J.A. Behr1 and G. Gwinner2 1 TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 Canada 2 Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 Canada E-mail: [email protected], [email protected] Abstract. We review the use of laser cooling and trapping for Standard Model tests, focusing on trapping of radioactive isotopes. Experiments with neutral atoms trapped using modern laser cooling techniques are testing several basic predictions of electroweak unification. For nuclear β decay, demonstrated trap techniques include neutrino momentum measurements from beta-recoil coincidences, along with methods to produce highly polarized samples. These techniques have set the best general constraints on non-Standard Model scalar interactions in the first generation of particles. They also have the promise to test whether parity symmetry is maximally violated, to search for tensor interactions, and to search for new sources of time reversal violation. There are also possibilites for exotic particle searches. Measurements of the strength of the weak neutral current can be assisted by precision atomic experiments using traps loaded with small numbers of radioactive atoms, and sensitivity to possible time-reversal violating electric dipole moments can be improved. PACS numbers: 23.40.Bw, 14.60.Pq, 32.80.Pj Published in the Journal of Physics G arXiv:0810.3942v3 [nucl-ex] 4 Mar 2009 J A Behr and G. Gwinner 2009 J. Phys. G: Nucl. Part. Phys. 36 033101 (38pp) http://dx.doi.org/10.1088/0954-3899/36/3/033101 This is an author-created, un-copyedited version of an article accepted for publication in the Journal ‡ of Physics G: Nuclear and Particle Physics.
    [Show full text]
  • ISOLDE Newsletter Spring 2012
    Spring 2012 ISOLDE newsletter http://www.cern.ch/isolde Introduction measurements of 21-32Mg and 12Be and the 96 COULEX of Kr, which confirmed the The ISOLDE experimental campaign 2011 previous results of ISOLTRAP and COLLAPS was highly successful. Forty-nine pointing to a smooth onset of deformation experiments and as many as 8 test runs in neutron-rich Kr isotopes. You will also were scheduled, which collected data using read about the continued R&D on targets over 90 different beams. The number of and ion sources which is indispensable to shifts delivered increased by 20% over ensure the pre-eminence of ISOLDE as a 2010. As you will read among the highlights world-leading ISOL facility. presented in this newsletter, a first In order to maximise the amount of beam production run on 35Ar for WITCH was delivered before the long shutdown of successful. The mass and half-life 2013, last winter’s shutdown was shortened measurement of 82Zn with ISOLTRAP is a and physics runs started up successfully at result of importance both for nuclear the beginning of April, with REX getting into structure and for astrophysics. On the laser the action during the first week of May. In spectroscopy front COLLAPS was used to the coming months up until the first week collect new data on the spins, radii, and of December, we will witness experiments moments of light 63-70Ga, neutron-rich 51K, with devices new to ISOLDE, including the and heavy Cd isotopes, while CRIS obtained active target MAYA from GANIL, an optical the first laser-spectroscopy results on TPC from Poland and the realization of the neutron-deficient Fr isotopes, opening a first resonant scattering experiments path towards laser spectroscopy with very making use of the reaction chamber weak beams.
    [Show full text]
  • Book of Abstracts Ii Contents
    ISOLDE Workshop and Users meeting 2013 Monday, 25 November 2013 - Wednesday, 27 November 2013 CERN Book of Abstracts ii Contents Welcome ............................................. 1 Direct reactions with exotic nuclei, recent results and future plans at HIE-ISOLDE . 1 Charge-particle spectroscopy of exotic nuclei with the Optical TPC ............ 1 Properties of low-lying intruder states in 34Al and 34Si populated in the beta-decay of 34Mg ................................................ 2 Beta-3p spectroscopy in the decay of 31Ar .......................... 2 Three-nucleon forces and shell structure of neutron-rich calcium isotopes . 3 Ultra-sensitive laser spectroscopy on Ca isotopes ...................... 3 The ISAC science program at TRIUMF, status and future plans ............... 4 Nuclear and Applied Research at JYFL Accelerator Laboratory ............... 4 WITCH, a Penning Trap Experiment for Weak Interaction Studies ............. 5 Breakup of 7Be in presence of heavy targets ......................... 5 Online TDPAC with digital spectrometers .......................... 6 Numerical studies of the electron beam optics of REXEBIS ................. 6 Lattice location of implanted 59Fe in 3C-SiC ......................... 6 The present status of production target development for Isotope Separation On-Line facility in Korea ........................................... 7 Testing the magic number N = 32 with multi-reflection time-of-flight mass measurements of the exotic potassium isotopes A = 52 and A = 53 ................... 7 Current status of the laser ion source development at RISP ................. 8 Can we dope the wide gap Ga2O3 semiconductor? - ion implantation and hyperfine inter- actions studies ........................................ 9 Towards Higher-Precision Mass Spectrometry of Rare Isotopes with ISOLTRAP . 9 Development of the SPEDE spectrometer ........................... 10 Isotope Separation On-Line facility for the Rare Isotope Science Project in Korea . 10 iii A new neutron time-of-flight array for beta-decay studies .
    [Show full text]