Optimal Decision Rules for Weak GMM By Isaiah Andrews1 and Anna Mikusheva2 Abstract This paper studies optimal decision rules, including estimators and tests, for weakly identi- fied GMM models. We derive the limit experiment for weakly identified GMM, and propose a theoretically-motivated class of priors which give rise to quasi-Bayes decision rules as a limiting case. Together with results in the previous literature, this establishes desirable properties for the quasi-Bayes approach regardless of model identification status, and we recommend quasi-Bayes for settings where identification is a concern. We further propose weighted average power- optimal identification-robust frequentist tests and confidence sets, and prove a Bernstein-von Mises-type result for the quasi-Bayes posterior under weak identification. Keywords: Limit Experiment, Quasi Bayes, Weak Identification, Nonlinear GMM JEL Codes: C11, C12, C20 First draft: July 2020. This draft: July 2021. 1 Introduction Weak identification arises in a wide range of empirical settings. Weakly identified non- linear models have objective functions which are near-flat in certain directions, or have multiple near-optima. Standard asymptotic approximations break down when identifi- cation is weak, resulting in biased and non-normal estimates, as well as invalid standard errors and confidence sets. Further, existing optimality results do not apply in weakly 1Harvard Department of Economics, Littauer Center M18, Cambridge, MA 02138. Email ian-
[email protected]. Support from the National Science Foundation under grant number 1654234, and from the Sloan Research Fellowship is gratefully acknowledged. 2Department of Economics, M.I.T., 50 Memorial Drive, E52-526, Cambridge, MA, 02142. Email:
[email protected].