L-Citrulline Supplementation: Impact on Cardiometabolic Health
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Free Amino Acids in Human Amniotic Fluid. a Quantitative Study by Ion-Exchange Chromatography
Pediat. Res. 3: 1 13-120 (1969) Amino acids fetus amniotic fluid pregnancy Free Amino Acids in Human Amniotic Fluid. A Quantitative Study by Ion-Exchange Chromatography HARVEYL. LEVY[^^] and PAULP. MONTAG Department of Neurology, Harvard Medical School; the Joseph P. Kennedy Jr. Memorial Laboratories, Massachusetts General Hospital, Boston, Massachusetts; and the Worcester Hahnemann Hospital, Worcester, Massachusetts, USA Extract Amniotic fluid was collected at inductive amniotomy or just prior to delivery following full-term uncomplicated pregnancies. Table I lists the means, ranges, and standard deviations for the concen- trations of amino acids obtained by ion-exchange chromatography of 16 specimens of amniotic fluid. Each specimen contained the following 22 amino acids: taurine, aspartic acid, threonine, serine, glutamine, proline, glutamic acid, citrulline, glycine, alanine, a-aminobutyric acid, valine, cystine, methionine, isoleucine, tyrosine, phenylalanine, ornithine, lysine, histidine, and arginine. In addition, tryptophan, which could not be detected by the ion-exchange chromatographic method employed, was found in each specimen by paper chromatography. The amino acids present in amniotic fluid were the same as those found in samples of maternal vein, umbilical artery, and umbilical vein serum (table 11). Comparisons were made in the concentrations of several amino acids among amniotic fluid, maternal serum, umbilical artery and vein serum, and perinatal urine (table 11).Taurine was present in considerably greater concentration in amniotic fluid than in maternal serum. This amino acid is also present in large quantities in umbilical artery and vein serum (table 11) and is by far the greatest single contributor to the total free amino acid pool in perinatal urine [I]. -
The Relationship Between Citrulline Accumulation and Salt Tolerance During the Vegetative Growth of Melon (Cucumis Melo L.)
The relationship between citrulline accumulation and salt tolerance during the vegetative growth of melon (Cucumis melo L.) H.Y. Dasgan1, S. Kusvuran1, K. Abak1, L. Leport2, F. Larher2, A. Bouchereau2 1Department of Horticulture, Agricultural Faculty, Cukurova University, Adana, Turkey 2Université de Rennes 1, Campus de Beaulieu, Agrocampus Rennes, Rennes Cedex, France ABSTRACT Citrulline has been recently shown to behave as a novel compatible solute in the Citrullus lanatus (Cucurbitaceae) growing under desert conditions. In the present study we have investigated some aspects of the relationship which might occur in leaves of melon seedlings, also known to produce citrulline, between the capacity to accumulate this ureido amino acid and salt tolerance. With this end in view, salt-induced changes at the citrulline level have been compared in two melon genotypes exhibiting contrasted abilities to withstand the damaging effects of high salinity. Progressive salinization of the growing solution occurred at 23 days after sowing. The final 250 mmol/l external NaCl concentration was reached within 5 days and further maintained for 16 days. In response to this treatment, it was found that the citrulline amount increased in fully expanded leaves of both genotypes according to different ki- netics. The salt tolerant genotype Midyat was induced to accumulate citrulline 4 days before the salt sensitive Yuva and as a consequence the final amount of this amino acid was twice higher in the former than in the latter. Compa- red with citrulline, the free proline level was found to be relatively low and the changes induced in response to the salt treatment exhibited different trends according to the genotypes under study. -
Dietary Supplements Compendium 2019 Edition
Products and Services New Dietary Supplements Reference Standards Below is a list of newly released Reference Standards. Herbal Medicines/ Botanical Dietary Supplements Baicalein Baicalein 7-O-Glucuronide Chebulagic Acid Dietary Supplements Compendium 2019 Edition Coptis chinensis Rhizome Dry Extract In response to the customer feedback, coupled with evolving information needs, USP moved the Psoralen Dietary Supplements Compendium (DSC) to an online platform for the 2019 edition. DSC continues Scutellaria baicalensis Root Dry to provide in-depth, comprehensive information for all phases of development and manufacturing of Extract quality dietary supplements including quality control, quality assurance, and regulatory/compendial Terminalia chebula Fruit Dry affairs. Extract Guarana Seed Dry Extract Some of the advantages that come with the new online DSC edition include: Cullen Corylifolium Fruit Dry Extract More frequent updates to ensure access to the most current information Procyanidin B2 Customizable alerts to notify of changes to selected documents An intuitive interface to facilitate quick and easy navigation Non-Botanicals A customizable workspace with bookmarks, alerts and a viewing history beta-Glycerylphosphorylcholine Convenient, anytime, anywhere access with common browsers Conjugated Linoleic Acids – In addition to selected new and revised monographs and General Chapters from the USP-NF and Triglycerides Food Chemicals Codex issued since the previous 2015 edition, the DSC 2019 features: Creatine Docosahexaenoic Acid 24 new General Chapters Eicosapentaenoic Acid 72 new dietary ingredient and dietary supplement monographs L-alpha- 27 sets of supplementary information for botanical and nonbotanical dietary supplements Glycerophosphorylethanolamine 59 updated botanical HPTLC plates L-alpha- Revised and updated dietary intake comparison tables Glycerylphosphorylcholine Updated Dietary Supplement Verification Program manual Omega-3 Free Fatty Acids Pyrroloquinoline Quinone View this page for more information or to subscribe to the 2019 online DSC. -
Dietary L-Citrulline Supplementation Modulates Nitric Oxide Synthesis and Anti-Oxidant Status of Laying Hens During Summer Seaso
Uyanga et al. Journal of Animal Science and Biotechnology (2020) 11:103 https://doi.org/10.1186/s40104-020-00507-5 RESEARCH Open Access Dietary L-citrulline supplementation modulates nitric oxide synthesis and anti- oxidant status of laying hens during summer season Victoria A. Uyanga, Hongchao Jiao, Jingpeng Zhao, Xiaojuan Wang and Hai Lin* Abstract Background: L-citrulline (L-Cit), a non-protein amino acid, has been implicated in several physiological functions including anti-inflammatory, anti-oxidative, and hypothermic roles, however, there is a paucity of information with regards to its potential in poultry production. Methods: This study was designed to investigate the effects of dietary L-Cit supplementation on the production performance, nitric oxide production, and antioxidant status of laying hens during summer period. Hy-Line Brown laying hens (n = 288, 34 weeks old) were allotted to four treatment, 6 replicates of 12 chickens each. Dietary treatments of control (basal diets), 0.25%, 0.50% and 1.00% L-Cit supplementation were fed to chickens for eight (8) weeks. Production performance, free amino acid profiles, nitric oxide production, and antioxidant properties were measured. Blood samples were collected at the 4th and 8th weeks of the experiment. Results: Air temperature monitoring indicated an average daily minimum and maximum temperatures of 25.02 °C and 31.01 °C respectively. Dietary supplementation with L-Cit did not influence (P > 0.05) the production performance, and rectal temperature of laying hens. Egg shape index was increased (P < 0.05) with increasing levels of L-Cit. Serum-free content of arginine, citrulline, ornithine, tryptophan, histidine, GABA, and cystathionine were elevated, but taurine declined with L-Cit diets. -
I ANALYSIS of L- CITRULLINE, L-ARGININE and L-GLUTAMIC
i ANALYSIS OF L- CITRULLINE, L-ARGININE AND L-GLUTAMIC ACID IN SELECTED FRUITS, VEGETABLES, SEEDS AND NUTS SOLD IN NAIROBI CITY COUNTY, KENYA PENINNAH MUENI MULWA (B.Ed. (Sc)) I56/29384/2014 A Thesis Submitted in Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science (Chemistry) in the School of Pure and Applied Sciences, Kenyatta University NOVEMBER, 2019 ii DECLARATION I hereby declare that this thesis is my original work and has not been presented for award of a degree or examination at any other University Signature ……………………………….. Date ………………… PENINNAH MUENI MULWA DEPARTMENT OF CHEMISTRY SUPERVISORS We confirm that the work referred in this thesis was carried by the candidate with our approval as University supervisors Prof. Wilson Njue Signature …………………Date …………………….. Department of Chemistry Kenyatta University Dr. Margaret Mwihaki Ng’ang’a Signature ……..............Date ……………. Department of Chemistry Kenyatta University iii DEDICATION This work is dedicated to my beloved daughter, Blessing Mumo, my father Stephen Mulwa, my mother Agnes Mulwa, my sisters Tracy and Josphine for their encouragement, moral and spiritual support as i travelled through the research journey. iv ACKNOWLEDGEMENTS First, I would like to thank the Almighty God for granting me grace to carry out the research work successfully. I am indeed grateful and would like to express my sincere appreciation to my supervisors Prof. Wilson Njue and Dr. Margaret Mwihaki Ng’ang’a both of Department of Chemistry, Kenyatta University for their tireless effort and many hours of guidance throughout the course of study. I am highly indebted to technicians, John Kamathi of Jomo Kenyatta University of Agriculture and Technology (JKUAT) and Jane Mburu, Department of Chemistry, Kenyatta University (KU) for their technical support during the LC-MS analysis of the samples. -
D-Penicillamine-Induced Status Dystonicus in a Patient with Wilson’S Disease: a Diagnostic & Therapeutic Challenge
A. Satyasrinivas, et al. D-penicillamine-induced Status Dystonicus | Case Report D-penicillamine-induced Status Dystonicus in A Patient with Wilson’s Disease: A Diagnostic & Therapeutic Challenge A. Satyasrinivas*, Y.S. Kanni, N.Rajesh, M.SaiSravanthi, Vijay kumar Department of General Medicine, Kamineni Institute Of Medical Sciences, Narketpally 508254 Andhra Pradesh, India. DOI Name http://dx.doi.org/10.3126/jaim.v3i2.14066 Keywords Dystonia,Gabapentin Kayser-Fleischer ring, ABSTRACT Trientein hydrochloride, Wilson’s disease. Wilson's disease is an autosomal-recessive disorder of copper metabolism Citation resulting from the absence or dysfunction of a copper-transporting protein. A. Satyasrinivas, Y.S. Kanni, N.Rajesh, The disease is mainly seen in children, adolescents and young adults, and is M.SaiSravanthi, Vijay kumar. D-penicillamine- induced Status Dystonicus in A Patient with characterized by hepatobiliary, neurologic, psychiatric and ophthalmologic Wilson’s Disease: A Diagnostic & Therapeutic (Kayser-Fleischer rings) manifestations. Mechanism of status dystonicus in WD Challenge. Journal of Advances in Internal Medicine is not clear We present here a case study of Wil. son’s disease in 14 year old 2014;03(01):62-64. child with dystonia not responed with routine therapy. INTRODUCTION but patient had developed loose stools, difficulty in speaking and pronouncing linguals. With these compliants he was Wilson’s disease (WD), also known as hepatolenticular admitted in the hospital. On Radio imaging and ophthalmic degeneration was first described in 1912 by Kinnear Wilson as examination he was diagnosed as a case of Wilson’s disease progressive lenticular degeneration. WD is an inherited, fatal and was started with tablet calcium Pantothenate and neurological disorder accompanied by chronic liver disease tablets D-Penicillamine and was discharged. -
The Diagnosis and Management of Ornithine Transcarbamylase Deficiency in Pregnancy: a Case Report
Perinatal Journal 2011;19(1):23-27 e-Adress: http://www.perinataljournal.com/20110191006 doi:10.2399/prn.11.0191006 The Diagnosis and Management of Ornithine Transcarbamylase Deficiency in Pregnancy: A Case Report Orkun Çetin1, Cihat fien1, Begüm Aydo¤an1, Seyfettin Uluda¤1, ‹pek Dokurel Çetin2, Hakan Erenel1 1Cerrahpafla T›p Fakültesi Kad›n Hastal›klar› ve Do¤um Anabilim Dal›, ‹stanbul, Türkiye 2Cerrahpafla T›p FakültesiÇocuk Sa¤l›¤› ve Hastal›klar› Anabilim Dal›, ‹stanbul Türkiye Abstract Objective: Ornithine transcarbamylase (OTC) deficiency is the most common urea cycle disorder. In our case, we discussed the fol- low up and the management of the OTC deficiency patient, diagnosed during pregnancy. Case: 32-year-old patient, OTC deficiency was diagnosed during pregnancy which was resulted with missed abortion. In the next pregnancy, the patient treated with phenyl butyrate, arginin ornitin lisin and carbamazepine. Coryon villus sampling (CVS) was done in the first trimester. There was not any mutation in the fetal gene locus. In the 39. gestational week, healthy female baby was deliv- ered by caesarean section. Conclusion: OTC deficiency is a rare disease. To make the followup and the management of these patients during pregnancy, may require knowledge and experience about complications. The treatment must be carried out with multidisciplinary approach. The genetic counseling should be given to the family about the prenatal diagnosis of OTC deficiency (CVS, amniosentesis). Keywords: Ornithine transcarbamylase deficiency, pregnancy, prenatal diagnosis, multidisciplinary approach. Gebelikte ornitin transkarbamilaz eksikli¤i tan›s› ve yönetimi: Olgu sunumu Amaç: Ornitin transkarbamilaz (OTC) eksikli¤i, en s›k rastlanan üre döngüsü bozuklu¤udur. -
D-Penicillamine)
IMPORTANT PRESCRIBING INFORMATION: D-PENAMINE (D-penicillamine) Subject: Temporary importation of D-PENAMINE (D-penicillamine) 125 mg tablets to address shortage November 15, 2018 Dear Health Care Provider: Due to the shortage of penicillamine titratable tablets in the United States (U.S.) market, Mylan is coordinating with the U.S. Food and Drug Administration (FDA) to temporarily import penicillamine 125 mg tablets to address a critical drug shortage of penicillamine 250 mg titratable tablets. Mylan has initiated temporary importation of D-Penamine (D-penicillamine) tablets, 125 mg (not scored) distributed in Australia by Alphapharm Pty Limited, an FDA- inspected Mylan facility in Carole Park, Australia. At this time no other entity except Mylan is authorized by the FDA to import or distribute D- Penamine (D-penicillamine) tablets, 125 mg in the U.S. FDA has not approved Mylan’s D- Penamine (D-penicillamine) tablets, 125 mg in the United States. Please note that during this temporary period and only for this product lot, FDA does not intend to initiate regulatory action for violations of applicable section 582(b) requirements of the Federal Food, Drug, and Cosmetic Act. Effective immediately, and during this temporary period, Mylan will offer the following: Product name and Size Product code NDC code description (Bottle Count) D-PENAMINE (D- penicillamine) – 125mg tablets 100 tablets AUST R 14625 N/A for oral administration The U.S. product labeling should be followed as prescribed by the treating physician except patients should be instructed to take the correct multiple of D-Penamine 125 mg tablets to equal their currently prescribed Depen® dose. -
Characterization of High-Ornithine-Producing Weissella Koreensis DB1 Isolated from Kimchi and Its Application in Rice Bran Fermentation As a Starter Culture
foods Article Characterization of High-Ornithine-Producing Weissella koreensis DB1 Isolated from Kimchi and Its Application in Rice Bran Fermentation as a Starter Culture Mun So Yeong , Moon Song Hee and Chang Hae Choon * Kimchi Research Center, Department of Food and Nutrition, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; [email protected] (M.S.Y.); [email protected] (M.S.H.) * Correspondence: [email protected] Received: 11 September 2020; Accepted: 23 October 2020; Published: 26 October 2020 Abstract: High-ornithine-producing Weissella koreensis DB1 were isolated from kimchi. Ornithine is produced from arginine via the intracellular arginine deiminase pathway in microorganisms; thus, high cell growth is important for producing ornithine in large quantities. In this study, excellent W. koreensis DB1 growth (A600: 5.15–5.39) was achieved in de Man, Rogosa, and Sharpe (MRS) medium supplemented with 1.0–3.0% arginine (pH 5.0) over 24–48 h at 30 ◦C, and the highest ornithine (15,059.65 mg/L) yield was obtained by culture in MRS containing 3.0% arginine for 48 h. W. koreensis DB1 was further investigated as a functional starter culture for rice bran fermentation. After 48 h of fermentation at 30 ◦C, the fermented rice bran was freeze-dried and ground. The prepared fermented rice bran contained 43,074.13 mg/kg of ornithine and 27,336.37 mg/kg of citrulline, which are used as healthcare supplements due to their beneficial effects. Furthermore, the organoleptic quality of the fermented rice bran was significantly improved, and the fermented product contained viable cells (8.65 log CFU/mL) and abundant dietary fiber. -
Designing Peptidomimetics
CORE Metadata, citation and similar papers at core.ac.uk Provided by UPCommons. Portal del coneixement obert de la UPC DESIGNING PEPTIDOMIMETICS Juan J. Perez Dept. of Chemical Engineering ETS d’Enginyeria Industrial Av. Diagonal, 647 08028 Barcelona, Spain 1 Abstract The concept of a peptidomimetic was coined about forty years ago. Since then, an enormous effort and interest has been devoted to mimic the properties of peptides with small molecules or pseudopeptides. The present report aims to review different approaches described in the past to succeed in this goal. Basically, there are two different approaches to design peptidomimetics: a medicinal chemistry approach, where parts of the peptide are successively replaced by non-peptide moieties until getting a non-peptide molecule and a biophysical approach, where a hypothesis of the bioactive form of the peptide is sketched and peptidomimetics are designed based on hanging the appropriate chemical moieties on diverse scaffolds. Although both approaches have been used in the past, the former has been more widely used to design peptidomimetics of secretory peptides, whereas the latter is nowadays getting momentum with the recent interest in designing protein-protein interaction inhibitors. The present report summarizes the relevance of the information gathered from structure-activity studies, together with a short review on the strategies used to design new peptide analogs and surrogates. In a following section there is a short discussion on the characterization of the bioactive conformation of a peptide, to continue describing the process of designing conformationally constrained analogs producing first and second generation peptidomimetics. Finally, there is a section devoted to review the use of organic scaffolds to design peptidomimetics based on the information available on the bioactive conformation of the peptide. -
L-Citrulline
L‐Citrulline Pharmacy Compounding Advisory Committee Meeting November 20, 2017 Susan Johnson, PharmD, PhD Associate Director Office of Drug Evaluation IV Office of New Drugs L‐Citrulline Review Team Ben Zhang, PhD, ORISE Fellow, OPQ Ruby Mehta, MD, Medical Officer, DGIEP, OND Kathleen Donohue, MD, Medical Officer, DGIEP, OND Tamal Chakraborti, PhD, Pharmacologist, DGIEP, OND Sushanta Chakder, PhD, Supervisory Pharmacologist, DGIEP, OND Jonathan Jarow, MD, Advisor, Office of the Center Director, CDER Susan Johnson, PharmD, PhD, Associate Director, ODE IV, OND Elizabeth Hankla, PharmD, Consumer Safety Officer, OUDLC, OC www.fda.gov 2 Nomination • L‐citrulline has been nominated for inclusion on the list of bulk drug substances for use in compounding under section 503A of the Federal Food, Drug and Cosmetic Act (FD&C Act) • It is proposed for oral use in the treatment of urea cycle disorders (UCDs) www.fda.gov 3 Physical and Chemical Characterization • Non‐essential amino acid, used in the human body in the L‐form • Well characterized substance • Soluble in water • Likely to be stable under ordinary storage conditions as solid or liquid oral dosage forms www.fda.gov 4 Physical and Chemical Characterization (2) • Possible synthetic routes – L‐citrulline is mainly produced by fermentation of L‐arginine as the substrate with special microorganisms such as the L‐arginine auxotrophs arthrobacterpa rafneus and Bacillus subtilis. – L‐citrulline can also be obtained through chemical synthesis. The synthetic route is shown in the scheme below. This -
Increased Citrulline Amino Aciduria/Urea Cycle Disorder
Newborn Screening ACT Sheet Increased Citrulline Amino Aciduria/Urea Cycle Disorder Differential Diagnosis: Citrullinemia I, argininosuccinic acidemia; citrullinemia II (citrin deficiency), pyruvate carboxylase deficiency. Condition Description: The urea cycle is the enzyme cycle whereby ammonia is converted to urea. In citrullinemia and in argininosuccinic acidemia, defects in ASA synthetase and lyase, respectively, in the urea cycle result in hyperammonemia and elevated citrulline. Medical Emergency: Take the Following IMMEDIATE Actions Contact family to inform them of the newborn screening result and ascertain clinical status (poor feeding, vomiting, lethargy, tachypnea). Immediately consult with pediatric metabolic specialist. (See attached list.) Evaluate the newborn (poor feeding, vomiting, lethargy, hypotonia, tachypnea, seizures and signs of liver disease). Measure blood ammonia. If any sign is present or infant is ill, initiate emergency treatment for hyperammonemia in consultation with metabolic specialist. Transport to hospital for further treatment in consultation with metabolic specialist. Initiate timely confirmatory/diagnostic testing and management, as recommended by specialist. Initial testing: Immediate plasma ammonia, plasma quantitative amino acids. Repeat newborn screen if second screen has not been done. Provide family with basic information about hyperammonemia. Report findings to newborn screening program. Diagnostic Evaluation: Plasma ammonia to determine presence of hyperammonemia. In citrullinemia, plasma amino