Revenue Management

Total Page:16

File Type:pdf, Size:1020Kb

Revenue Management HOTEL REVENUE MANAGEMENT REVENUE MANAGEMENT It Really Should Be Called Profit Management by Mark Haley & Jon Inge Revenue management is more complex about revenue management. Anyone selling than ever and potentially more rewarding, a perishable product knows that you need too. The entire organization must pull to- to flex your pricing in accordance with de- $$$gether to make revenue management suc- mand, lead time, competitors and a host of Put most simply, revenue management cessful, but the right RM implementation can other factors. Hotel rooms, airplane seats, positively drive results, creating not only rev- advertising time, fresh produce and winter is a way of doing enues but also profits. clothing are all subject to revenue manage- business that means Most practitioners accept that imple- ment tactics. every department menting revenue management in a hotel can Revenue management as a formal dis- increase revenues 3 percent to 6 percent. cipline has its origins in the domestic Ameri- focuses on what they Many have won much greater increases. can airline industry of the 1970s. Estab- need to do to drive the Affinia Hospitality saw revenues increase 17 lished, regulated airlines were threatened by total profitability of the percent over the prior year in the first month unregulated charter competitors. American after implementing manual RM processes in Airlines (AA), led by the legendary Bob organization. a new central reservations office. The Mil- Crandall, sought to cut the charters off at the lennium Bostonian Hotel paid back all of pass. AA did so successfully with advance their start-up costs and more in the first purchase restrictions on deeply discounted month after converting from manual RM pro- fares. Thus was born yield management cesses to an ASP-based service. Harrah’s En- (YM), the precursor to today’s revenue man- tertainment credited its RM system (installed agement. in 2001) with increasing room and gaming AA and other airlines refined and ex- revenues 13 percent for the year in 2002. tended their YM capabilities during the early Focus on that for a moment. years of deregulation, ultimately giving them Implementing revenue management the ability to price every seat on every flight can increase revenues 3 percent to 6 per- for maximum value, selling low cost seats to cent, or more. price-sensitive travelers (usually the leisure Then consider that most of that incre- segment) and high-cost seats to time-sensi- mental revenue flows through to operating tive travelers (usually on business). The im- profit. So, you might think you can increase pact and benefit of these capabilities became profitability merely by installing a computer transparent to all observers by the end of system. Well, not exactly: Revenue manage- 1985, when AA reported 48 percent profit ment is not a computer system or a set of growth on 14.5 percent revenue growth, arcane statistical algorithms. It isn’t even a while low-cost competitor People’s Express very hotel manager, operator department in your hotel. Put most simply, was hemorrhaging customers and cash. and owner has a fundamental revenue management is a way of doing busi- These financial results and the overwhelm- obligation to optimize the ness that means every department focuses ing competitive advantage attracted a great long-term profitability of the on what they need to do to drive the total deal of attention from many industries. Eassets he or she oversees. Ful- profitability of the organization. Computer Cruise lines, car rental agencies and ho- filling this obligation means increasing rates systems drive a much more disciplined and tel companies started to evaluate the ben- during busy periods and dropping them dur- consistent implementation of RM, but the or- efits of adopting YM as a business strategy. ing slower times to maintain occupancy or it ganization must embrace the cultural shifts Early adopters in the hotel space included means incurring expenses like a room reno- required to benefit from revenue manage- Marriott International, Holiday Inns World- vation or investment in technology. Given the ment. It’s the culture, not the computer. wide (now InterContinental Hotels Group), uptick in demand of the past year, one area of Hilton Hotels Corporation and ITT Sheraton. investment more and more hotel companies How Did All This Start? Organizations with centralized information are evaluating is revenue management (RM). Let’s examine the history of RM and systems and management structures adopted Hoteliers believe that they can drive increased some of the basic concepts. Many people centralized systems. More decentralized profitability using RM tools and techniques. correctly observe that there is nothing new organizations sought property-based systems. >> 6 • HOSPITALITY UPGRADE • www.hospitalityupgrade.com | Fall 2004 $ HOTEL REVENUE MANAGEMENT What Does RM Mean? Some of today’s sys- As yield management matured into rev- tems optimize ancillary enue management, the standard definition revenues as well as room of the art evolved: Revenue management is revenue. In this scenario the practice of selling the right product management provides an (room, seat and banana) for the right price estimated profit margin (rate and fare) at the right time to the right for each ancillary rev- customer. In the era of compound distribu- enue stream (casino play, tion channels and merchant model outlets, lift tickets and food and we can also add via the right channel. Dif- beverage sales) as well as ferent channels demand different prices and rooms margin. The sys- yielding strategies, and guests have come to tem then generates rec- expect different prices by channel because ommendations that opti- mize profit rather than the product itself is subtly different on each. Sample Calendar View of an RMS. This screen is where the revenue manager typi- A good example of differentiation by service revenue. For example, cally first goes in the system. Note flags for high or low occupancy, special events could be a low-priced merchant model room Intrawest Resorts’ group and alerts. These flags make the Calendar View exception-driven, so the revenue sale that excludes frequency program points RM module may recom- manager goes straight to the arrival dates flagged as opportunities to increase rev- or upgrade benefits. mend accepting a group enue. Screen shot courtesy of IDeaS, Inc. Drilling down on that definition a little with a ski lift ticket com- bit, let’s see what it takes to execute against mitment at a lower room The Revenue Management Cycle it. The first building block is an accurate rate than would be sold to record of demand for past arrival dates with transients with a smaller arrival date, departure date, booking date, lift ticket revenue forecast. rate and market segment, including book- The same logic applies to ing channel, captured for every reservation. optimizing room revenue The system then calculates the day of week by cost of distribution (DOW) for the arrival and departure dates channel. and length of stay (LOS). Ideally, you will Most RMSs provide a start with just over a year’s worth of history, choice of merely offering but that often is not practical. up recommendations or The next element is data about known automatically triggering demand for future arrival dates, again by seg- status and inventory con- ment. The revenue management system trols in the PMS or CRS. (RMS) extracts this data from the PMS or A recommendation- CRS daily (or more often) on an on-going driven system requires basis. The historical data, in combination more time, expertise and with the known demand for future arrival attention from the hotel’s dates, is then used to forecast demand by revenue manager to enter segment for all future arrival dates within a the recommendation into defined window. This forecast is usually sen- the PMS, CRS or other sitive to DOW factors and seasonal and secu- channel. A command- lar demand shifts. driven system automates The system then optimizes the available the input, but naturally re- rate and stay pattern controls against the fore- quires a more robust inter- casted demand and makes recommendations face to the PMS or CRS. ized demand that trigger status controls when as to what controls to apply on what arrival There are also hybrid solutions that allow “X” number of rooms are booked for a given dates to generate the most total revenue. hotels to establish parameters defining the rec- arrival date. While these triggers offer value and Finally, the system captures actual perfor- ommendations that can be implemented auto- discipline in managing inventory, they are reac- mance (again via extracts from PMS or CRS) matically vs. those that need to be reviewed be- tive rather than proactive, responding only to on the arrival date and, in some cases, modi- fore implementation. In these systems all, some pre-set triggers and not identifying changes in fies the forecasting and optimization algo- or no recommendations can be deployed auto- booking pace. We would label these features as rithms for no shows or walk-ins and the matically depending on the client’s needs. rate management, and argue that they do not impact of the controls actually imposed. This Some PMS or CRS products offer auto- represent revenue management because they element closes the feedback loop and makes mated yielding tools that may appear to sup- lack the crucial forecasting and revenue opti- the system heuristic, able to learn from its port RM functions. These features allow the mization algorithms. experience over time. hotel to define business rules sensitive to real- Likewise, a number of business intelligence >> 8 • HOSPITALITY UPGRADE • www.hospitalityupgrade.com | Fall 2004 $ HOTEL REVENUE MANAGEMENT (BI) tools provide tremendous analytical support to the revenue man- agement function. Decisions, from Datavision Technologies (http:// datavisiontech.com/index.html), extracts a wealth of PMS data on past and future performance and presents it in an accessible and interac- tive manner facilitating decision-making, but not necessarily calculat- ing forecasts and optimized controls.
Recommended publications
  • New Strategies for CPG Revenue Growth Management: Harnessing AI to Change the Game
    New Strategies for CPG Revenue Growth Management: Harnessing AI to Change the Game New Strategies for CPG Revenue Growth Management: Harnessing AI to Change the Game CPG companies are struggling to achieve support from CPGs and the cost to serve a retailer is profitable growth in today’s shifting shopper actually increasing for CPGs with no real return from landscape. gross revenue growth. The Promotion Optimization Institute (POI) State In this new playing field, it is clear that traditional of the Industry Report found CPG companies approaches to win the consumer primarily through invest between 11% and 27+% of gross revenues investments in Trade Promotions at the retail shelf are on Trade Promotions to drive growth.1 Trade not enough. Leading CPGs are increasingly adopting spend dollars are deducted from gross revenue a discipline called “Revenue Growth Management and net revenue is reported to the market so (RGM)”. Now, AI enables these organizations to scale reduction of trade dollars would show up as RGM practices across their entire organization and growth in net revenue. Trade funds are not realize a 3-5% increase in margin. generating gross revenue or volume growth and 72% of trade promotions fail to break even.2 Retailers are demanding even more trade dollar > By Adeel Najmi, Chief Product Officer,CPG Solutions, Symphony RetailAI and Pam Brown, Chief Customer Officer, Promotion Optimization Institute 1 1 The POI 2019 State of the Industry Report, released February 2019. 2 Nielsen Price/ Promotion survey, 2017. New Strategies for CPG Revenue Growth Management: Harnessing AI to Change the Game 1 The New Playing Field 2 Traditional Customer- Winning consumers today is a whole new game, Specific Trade Solutions but many CPG organizations are still playing by the old rules.
    [Show full text]
  • Revenue Growth in an Inflationary Environment
    Part May Discovering Pockets of Demand 7 2021 REVENUE GROWTH IN AN INFLATIONARY ENVIRONMENT EXECUTIVE SUMMARY The post-pandemic CPG industry has seen significant price inflation, driven by increased demand, out-of-stocks, reduction in promotion, and premiumization. As the economy rebounds, significant input price inflation and increased logistics costs are pressuring manufacturers to raise prices even as increased mobility is likely to moderate demand for in-home consumption categories. To win the market share battle in this unchartered environment, traditional pricing practices alone will not be sufficient. Managers will need to be agile and leverage technology, advanced analytics and newer, granular near real-time datasets to discover and capture profitable revenue growth opportunities. PRICING CHALLENGES • Vaccination-enabled increased mobility, including return to schools, restaurants, entertainment, travel, etc., is expected to decrease in-home consumption for several categories, but the rate of decline is uncertain and uneven across categories. • In step with easing demand is an increase in consumer price sensitivity and grocery shoppers will be more mindful of the prices even as many other goods and services begin to compete for their wallet. • Manufacturers and retailers are fighting to retain new buyers acquired during the pandemic surge and will be eager to improve their share position as supply and demand reverts to a new equilibrium. • Managing pricing in this challenging environment calls for innovative, agile growth strategies, leveraging the full spectrum of revenue growth levers to spot and execute on profitable revenue opportunities. BEST PRACTICES IN REVENUE GROWTH MANAGEMENT • Growth leaders typically capture 3-5 points of topline growth and 5-10 points in ROI improvement from pricing & trade investments.
    [Show full text]
  • Demand Forecasting and Revenue Management
    MSCI 381 – Demand Forecasting and Revenue Management Course Co-ordinator Dr Joern Meissner Personal website: http://www.meiss.com Email: joe [at] meiss.com Lecturers Dr Sven F. Crone (s.crone [at] lancaster.ac.uk; Room A53a) Prof Robert Fildes (r.fildes [at] lancaster.ac.uk; Room A53) Dr Joern Meissner (j.meissner [at] lancaster.ac.uk; Room A48) Time and Place Monday 2:00 pm – 3:00 pm, George Fox LT3 Wednesday 10:00 am – 11:00 am, Flyde LT 3 Thursday 1:00 pm – 2:00 pm, Flyde LT 3 Practical Labs take place in: Thursday 1:00 pm – 2:00 pm, Computer Lab A1 in the Management School Course Website http://www.lums.lancs.ac.uk/ugModules/MSCI381/ Course Description Every firm eventually has to sell its products. Questions that arise in this context are, for example: What sales channels should the firm use? How should a product be priced in the different channels? How can the firm prevent cannibalization across channels? How should prices be adjusted due to seasonality? How should a firm react after initial demand has been observed? In this course, we focus on two elementary parts of this decision process namely, how to forecast the arising demand and how to set the best prices for the offered products. Forecasting is used throughout most organisations. There are many approaches to producing forecasts, some of which rely on the judgement of individuals, whilst other methods are more formal and are based on statistical models. This course introduces the two most common statistical approaches: extrapolation, where the history of the variable being forecast is all that is used to produce a forecast, and causal modelling which seeks an explanation for changes.
    [Show full text]
  • Forecasting and Availability Controls in Hotel Revenue Management
    SHA532: Forecasting and Availability Controls in Hotel Revenue Management Copyright © 2012 eCornell. All rights reserved. All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners. 1 This course includes Three self-check quizzes Multiple discussions; you must participate in two One final action plan assignment One video transcript file Completing all of the coursework should take about five to seven hours. What You'll Learn To explain the role of forecasting in hotel revenue management To create a forecast and measure its accuracy To recommend room rates To apply length-of-stay controls to your hotel Course Description Successful revenue management strategies hinge on the ability to forecast demand and to control room availability and length of stay. This course, produced in partnership with the Cornell School of Hotel Administration, explores the role of the forecast in a revenue management strategy and the positive impact that forecasting can also have on staff scheduling and purchasing. This course presents a step-by-step approach to creating an accurate forecast. You'll learn how to build booking curves; account for "pick-up"; segment demand by market, group, and channel; and calculate error and account for its impact. Sheryl Kimes Copyright © 2012 eCornell. All rights reserved. All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners. 2 Professor of Operations Management, School of Hotel Administration, Cornell University Sheryl E. Kimes is a professor of operations management at the School of Hotel Administration. From 2005-2006, she served as interim dean of the School and from 2001-2005, she served as the school's director of graduate studies.
    [Show full text]
  • Demand Models for the Static Retail Price Optimization Problem – a Revenue Management Perspective
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Dagstuhl Research Online Publication Server Demand models for the static retail price optimization problem – A Revenue Management perspective Timo P. Kunz and Sven F. Crone Department of Management Science, Lancaster University Lancaster LA1 4YX, United Kingdom {t.p.kunz, s.crone}@lancaster.ac.uk Abstract Revenue Management (RM) has been successfully applied to many industries and to various problem settings. While this is well reflected in research, RM literature is almost entirely focused on the dynamic pricing problem where a perishable product is priced over a finite selling horizon. In retail however, the static case, in which products are continuously replenished and therefore virtually imperishable is equally relevant and features a unique set of industry-specific problem properties. Different aspects of this problem have been discussed in isolation in various fields. The relevant contributions remain therefore scattered throughout Operations Research, Econometrics, and foremost Marketing and Retailing while a holistic discussion is virtually non-existent. We argue that RM with its interdisciplinary, practical, and systemic approach would provide the ideal framework to connect relevant research across fields and to narrow the gap between theory and practice. We present a review of the static retail pricing problem from an RM perspective in which we focus on the demand model as the core of the retail RM system and highlight its links to the data and the optimization model. We then define five criteria that we consider critical for the applicability of the demand model in the retail RM context.
    [Show full text]
  • Why It Is Difficult to Apply Revenue Management Techniques to the Car Rental Business and What Can Be Done About It Robert F
    Molloy College DigitalCommons@Molloy Faculty Works: Mathematics & Computer Studies 11-2015 Why It Is Difficult to Apply Revenue Management Techniques to the Car Rental Business and What Can Be Done About It Robert F. Gordon Ph.D. Molloy College, [email protected] Follow this and additional works at: https://digitalcommons.molloy.edu/mathcomp_fac Part of the Graphics and Human Computer Interfaces Commons, Mathematics Commons, Other Computer Sciences Commons, and the Partial Differential Equations Commons DigitalCommons@Molloy Feedback Recommended Citation Gordon, Robert F. Ph.D., "Why It Is Difficult to Apply Revenue Management Techniques to the Car Rental Business and What Can Be Done About It" (2015). Faculty Works: Mathematics & Computer Studies. 1. https://digitalcommons.molloy.edu/mathcomp_fac/1 This Article is brought to you for free and open access by DigitalCommons@Molloy. It has been accepted for inclusion in Faculty Works: Mathematics & Computer Studies by an authorized administrator of DigitalCommons@Molloy. For more information, please contact [email protected],[email protected]. 2015 Conference Proceedings Northeast Business & Economics Association NBEA 2015 Forty-Second Annual Meeting November 5 – 7, 2015 Hosted by York College The City University of New York Jamaica, New York Conference Chair Proceedings Editor Olajide Oladipo Kang Bok Lee York College, CUNY York College, CUNY Citation: Why It Is Difficult to Apply Revenue Management Techniques to the Car Rental Business and What Can Be Done About It, Robert F. Gordon, Proceedings of the Northeast Business & Economics Association 42nd Annual Conference, Jamaica, New York, November 5-7, 2015, pp. 135-138. Why It Is Difficult to Apply Revenue Management Techniques to the Car Rental Business and What Can Be Done About It Robert F.
    [Show full text]
  • Using Revenue Management in Multiproduct Production/Inventory Systems: a Survey Study
    Using Revenue Management in Multiproduct Production/Inventory Systems: A Survey Study Master’s Thesis Department of Production economics Linköping Institute of Technology Hadi Esmaeili Ahangarkolaei Mohammad Saeid Zandi LIU-IEI-TEK-A--10/00962—SE Using Revenue Management in Multiproduct Production-Inventory Systems: A Survey Study Hadi Esmaeili Ahangarkolaei [email protected] Mohammad Saeid Zandi [email protected] Master Thesis Subject Category: Technology Linköping University, Institute of Technology, Department of Management and Engineering SE 58183 Linköping Examiner: Ou Tang Supervisor: Ou Tang [email protected] +46 13 281773 Keywords: Revenue Management, Multiproduct, Bundling Product, Substitute Product, Assortment Planning, Pricing, Inventory Management II Acknowledgments We would like to thank all the people who have been directly or indirectly involved in this master thesis. Especially we would like to express our sincere thanks to our nice teacher and supervisor Dr. Ou Tang; who has kindly helped and supported us over this thesis as well as over our study period at Linköping University. III Abstract The study aims at investigating how revenue management techniques can be applied in industries which offer multiple products. Most of the companies nowadays trend to produce multiperoducts and they try to find the best method of selling. Therefore, revenue management can be considered as a new direction which should be developed for these firms. In this study, multi-product firms are mainly referred as firms offering a bundle of products or substitute products. In this regard, models and techniques applied in multiproduct firms are discussed and it is tried to provide basic models to better understand the problems, variables, customer choice models and constraints.
    [Show full text]
  • The Battle to Optimise Trade Terms Spend (TTS) – and How Technology Is Helping Consumer Products ➜ Companies Fight It % ➜
    The battle to optimise Trade Terms Spend (TTS) – and how technology is helping Consumer Products ➜ companies fight it % ➜ Every year Consumer Packaged Goods (CPG) organisations spend huge sums on trade spend (TTS, or Trade Terms Spend), with some statistics putting this figure at over 20% of total revenue. Trade spend describes the money that CPGs pay to their customers, the retailers, to incentivise them to increase consumer demand for their products. Most of this amount relates to promotional activities. Unfortunately, there are several factors already eroding CPGs power in customer negotiations that are likely to increase this percentage in the future. These include new channels dominated by highly competitive customers such as internet retailers and discounters, and pressure now being exerted by some traditional customers combining their bargaining power into buying groups. However, the outlook is not all doom and gloom; there are several strategies that CPG organisations can adopt to either combat or even exploit these evolving market conditions. € These include implementing net revenue management £ $ (see our separate article ‘Securing Good Growth with Net Revenue Management’) and investing in modern technology and analytics tooling to provide real insight to optimise trade 1 8 3 spend. In this article Nick Dawnay and Jon Bradbury discuss 4 how CPG organisations can use technology to help optimise 6 their trade spend and the factors that need to be considered 1 7 to ensure that such tooling is implemented effectively. 0 7 2 0 Technology as an enabler for growth 2 1 ‘Digital’ is a current buzzword for the CPG sector as it is for many others.
    [Show full text]
  • Revenue Management and Pricing Sample Course Syllabus (Subject to Minor Revisions)
    Revenue Management and Pricing Sample Course Syllabus (subject to minor revisions) INSTRUCTORS: Gustavo Vulcano, IOMS, Stern School of Business, NYU KMC 8-76, (212) 998-4018, [email protected] Office Hours: After class or by appointment. INTRODUCTION: Revenue Management and Pricing (RMP) focuses on how firms should manage production capacity, resources and product availability policies across different selling channels in order to maximize performance and profitability. The primary goal of Revenue Management has been succinctly described as “selling the right product to the right customer at the right time for the right price”. RMP offers great value to companies selling seasonal/perishable products under uncertain and changing market conditio ns. The philosophy, strategy and techniques are widely used in the following industries: . Transportation (airline, railway, rental car) . Hospitality (hotels, cruise lines, ferries, casinos) . Media (television advertising, internet ad sales) . Retail (apparel, consumer goods) . Health Care (hospitals, clinics) . Manufacturing (made-to-order manufacturing) . Finance (financial products) For example, American Airlines estimates that its pricing and revenue management practices have generated more than $1.4 billions in additiona l increme nta l revenue over a three-year period. In addition, the restless evolution of information technologies and software development have fueled the rapid growth of commercia l RMP systems and related consulting services. COURSE OBJECTIVES: This course provides an introduction to both the theory and the practice of revenue management and pricing. Fundamentally, revenue management is an applied discipline; its value derives from the business results it achieves. At the same time, it has strong elements of an applied science and the technical elements of the subject deserve rigorous treatment.
    [Show full text]
  • Dynamic Pricing to Improve Supply Chain Performance
    DynamicDynamic PricingPricing toto improveimprove SupplySupply ChainChain PerformancePerformance David Simchi-Levi M.I.T. November 2000 PresentationPresentation OutlineOutline • The Direct-to-Consumer Model – Motivation – Opportunities suggested by DTC • Flexible Pricing Strategies • Future Research Directions CharacteristicsCharacteristics ofof thethe IndustrialIndustrial PartnerPartner • Make-to-stock environment • Annual revenue in 1998 was about $180 billion • Annual spending on supply is more than $70 billion • Huge product variety and a large number of parts • Inventory levels of parts and unsold finished goods is about $40 billion DirectDirect toto ConsumerConsumer (DTC)(DTC) Consumers Retailers Distribution Manufacturer Center TheThe ImpactImpact ofof thethe DTCDTC ModelModel • Valuable Information for the Manufacturer – e.g., accurate consumer demand data TraditionalTraditional SupplySupply ChainChain CustomerCustomer DemandDemand Order Size RetailerRetailer OrdersOrders DistributorDistributor OrdersOrders ProductionProduction PlanPlan Time Source: Tom Mc Guffry, Electronic Commerce and Value Chain Management, 1998 TheThe DynamicsDynamics ofof thethe SupplySupply ChainChain CustomerCustomer DemandDemand Order Size ProductionProduction PlanPlan Time Source: Tom Mc Guffry, Electronic Commerce and Value Chain Management, 1998 WeWe Conclude:Conclude: In Traditional Supply Chains…. • Order Variability is amplified up the supply chain; upstream echelons face higher variability. • What you see is not what they face. ConsequencesConsequences…….
    [Show full text]
  • Does It Reflect on Students' Financial Literacy?
    A Systematic Analysis of the Financial Competencies in the Hospitality Industry: Does it Reflect on Students’ Financial Literacy? A Project Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfillment Of the Requirements for the Degree Master of Science in Hospitality Management By Chongwen Xie 2018 SIGNATURE PAGE PROJECT: A SYSTEMATIC ANALYSIS OF THE FINANCIAL COMPETENCIES IN THE HOSPITALITY INDUSTRY:DOES IT REFLECT ON STUDENTS’ FINANCIAL LITERACY? AUTHOR: Chongwen Xie DATE SUBMITTED: Fall 2018 The Collins College of Hospitality Management Donald St. Hilaire Project Committee Chair The Collins College of ______________________________________ Hospitality Management Zhenxing Mao Project Committee Member ______________________________________ The Collins College of Hospitality Management Linchi Kwok Project Committee Member ______________________________________ The Collins College of Hospitality Management ii Abstract This paper presents a systematic analysis of the technical skills required by the hospitality industry. The financial competencies identified in the literature include: handling payments; cost management; profit control; forecasting and budgeting; labor scheduling; transactions supervision; revenue management; and, data and reports management. This study emphasizes the links between financial competencies and financial literacy by exploring approximately 36 published articles and unpublished dissertations from the past two decades. A holistic reflection of the links and gaps between financial competencies and financial literacy will be used to identify which competencies are missing in students’ literacy skills. In addition, this study indicates the need and requirement for financial competency skills in the hospitality industry, specifically, within the food service component. Based on the above content, the study will identify what type of hospitality job positions might be suitable for students with different backgrounds.
    [Show full text]
  • Passenger Name Record Data Mining Based Cancellation Forecasting for Revenue Management
    Passenger Name Record Data Mining Based Cancellation Forecasting for Revenue Management Dolores Romero Morales ¤ and Jingbo Wang y April 16, 2008 Abstract Revenue management (RM) enhances the revenues of a company by means of demand-management decisions. An RM system must take into account the possibility that a booking may be canceled, or that a booked customer may fail to show up at the time of service (no-show). We review the Passenger Name Record data mining based cancellation forecasting models proposed in the literature, which mainly address the no-show case. Using a real-world dataset, we examine the performance of the existing models and propose new promising ones based on Support Vector Machines. We also illustrate how the set of relevant variables to describe cancellation behavior is very di®erent in di®erent stages of the booking horizon, which con¯rms the dynamic aspect of this problem. Keywords: revenue management, cancellation forecasting, PNR data mining, two-class probability estimation, support vector machines ¤SaijdBusiness School, University of Oxford, Park End Street, Oxford OX1 1HP, United Kingdom; email: [email protected] ySaijdBusiness School, University of Oxford, Park End Street, Oxford OX1 1HP, United Kingdom; email: [email protected] 1 1 Introduction Revenue Management aims at enhancing the revenues of a company by means of demand-management decisions such as dynamic pricing and capacity allocation [27]. The classical revenue management scenario is that in which a service provider sells a ¯xed number (the capacity) of identical perishable service products (air seats, hotel rooms, etc.) through a booking process which ends at a ¯xed deadline (the booking horizon).
    [Show full text]