<<

Lattice Gauge Theory

Hartmut Wittig

Oxford University

EPS High Energy Physics 99

Tamp ere, Finland 20 July 1999

Intro duction

 Lattice QCD provides a non-p erturb ati ve

framework to compute relations between SM

parameters and exp erimental quantities from rst

principles

 Formulate QCD on a euclidean space-time lattice

3

with spacing a and volume L  T

1

a   gauge invariant

UV

Z

S S 1

G F

 ][d ] e h i = Z [dU ][d

! allows for sto chastic evaluation of h i

 Ideally want to use lattice QCD as a

phenomenologi ca l to ol, e.g.

 

M  f

s Z 

7!

m + m 2 GeV  m

+

u s

K

 However, realistic simulation s of lattice QCD are

hard... 1

1 Lattice artefacts cuto e ects

lat cont p

h i = h i + O a 

1

a  1 4 GeV , a  0:2 0:05 fm

! need to extrap olate to continuum limit: a ! 0

! cho ose b etter discretisati ons: avoid small p.

2 Inclusion of dynamical e ects:

Z

Y



S [U ] lat

G

Z = [dU ] e det D + m

f

f

lat

detD + m  =1: Quenched Approximation

f

! neglect quark lo ops in the evaluation of h i.

cheap

exp ensive 2

Scale ambiguity in the quenched approximation:

p

Q [MeV ]

1

;::: ; Q = f ;m ;m ; a [MeV ]=

 N 

aQ

3 Restrictions on quark masses:

1

a  m  L

q

! cannot simulate u; d and b directly

! need to control extrap olation s in m

q

4 Chiral symmetry breaking:

Nielsen & Ninomiya 1979: exact chiral symmetry

cannot b e realised at non-zero lattice spacing

! imp ossibl e to separate chiral and continuum

limits 3

Outline:

I. The lattice Dirac op erator

{ Improved actions

{ Exact chiral symmetry on the lattice

II. Simulations with dynamical quarks

{ Light hadron sp ectrum, quenched & unquenched

III. Light quark masses

{ Non-p erturba tive renormalisat ion

{ Recent estimates

IV. Glueballs & heavy hybrids

V. Omissions

VI. Summary 4

I. The lattice Dirac op erator

 Massless free :

X

4

S = a  x D x y  y 

F

x;y

a D x y  is lo cal

2

e

b D p=i p + O ap 

 

e

c D p is invertible for p 6=0

d D + D =0

5 5

! Nielsen & Ninomiya: a{d do not hold

simultaneous ly

! either left with doublers

or chiral symmetry broken explicitly

 Staggered Kogut-Susskind fermions

 Wilson fermions



 

1 1

ar r + r r D =

   W

 

2 2

- degeneracy fully lifted; chiral symmetry broken

- leading cuto e ects of order a  p =1 5

O a improved Wilson fermions

 Can one nd discretisation for Wilson fermions

with reduced cuto e ects?

 Symanzik improvement: Remove leading lattice

artefacts by adding a counterterm to the Wilson-

Dirac op erator Sheikholeslami-Wohlert,:::

ia

c  F x D = D + m +

sw   SW W 0

4

 Fix c g  through suitable improvement

sw 0

condition

2

! leading lattice artefacts are O a  in sp ectral

quantities

 For n =0 and n =2, c has b een determined

f f sw

non-p erturba ti vely M. L uscher et al. 1997;

R. Edwards et al. 1997; Jansen & Sommer 1998. 6

 Scaling of m for m =m = 0:7 T. Klassen

V PS V

1998

 Non-p erturbati vel y improved Wilson action:

2

scaling b ehaviour is consistent with residual a

artefacts

 Can push Symanzik improvement to higher orders

Alford, Klassen, Lepage 1998

 Chiral symmetry remains broken 7

Exact chiral symmetry on the lattice

 Chiral symmetry breaking may be tolerated in

many applica tion s of QCD

 Chiral symmetry is crucial for non-p erturb ati ve

formulation of

- EW theory

- SUSY

 Prop osals to circumvent the NN Theorem:

{ Domain Wall Fermions

Kaplan 1992; Shamir, Furman 1993

{ Overlap Formalism Narayanan, Neub erger, 1993{98

{ \Perfect Actions"

Hasenfratz, Niedermayer, :: :, 1993{98

{ Ginsparg-Wil son relation

Ginsparg & Wilson 1982, L uscher 1998{99

 See also:

T. Blum, Lattice 98



M. Luscher 

Lattice 99

H. Neub erger 8

Domain Wall Fermions Shamir & Furman

th

 Intro duce discrete extra 5  dimension :

6

 x  x

1 N

s

 x  x

1 N

4 k

s

L ;D x; y   x  x;

s

s

?

 -

?

N ;D

0

s

ss

DWF k ?

0

D x; y =D x; y  +  x y D

0 0

ss

ss ss

k

D x; y : Wilson-Dirac op erator with mass M .

?

D : contains Dirac mass m.

0

ss

 For m =0; N !1:

s

- no doublers

- chiral mo des are trapp ed in 4-dim. domain

walls at either end

 In practice: work at nite N

s

! decouplin g of chiral mo des not exact

{ terms which break chiral symmetry are

exp onential ly suppressed 9

 Pion mass:

2 N

s

am  = C am + ae 



Blum, Soni, Wingate, hep-lat/9902016, N =10

s

! Can realise almost exact chiral symmetry at non-

zero a at the exp ense of simulating 5-dim. theory

{ N  10 30 may b e sucient?

s 10

Ginsparg-Wi l so n Relation

 Replace condition D + D =0 by the weaker

5 5

relation Ginsparg & Wilson 1982

D + D = aD D

5 5 5

 If D satis es GWR, then this implies an exact

global symmetry L uscher 1998

1 1

aD ;  aD   = 1  =  1

5 5

2 2

! \lattice chiral symmetry"

! Flavour-singlet case: Ward identitie s have correct

anomaly

 Construction of gauge theories with lo cal chiral

symmetry Ab eli an and non-Ab elia n relies on

GWR Luscher  1998{99

Overlap Formalism Narayanan, Neub erger

 Reinterpretation of the domain wall prop osal;

Overlap op erator Neub erger 1998:



1=2

y

1

D = 1 A A A ; A =1 aD

N W

a

D : massless Wilson-Dirac op erator

W

! satis es GW-relation 11

Witten's SU2 anomaly on the lattice

 Witten 1982: SU2 gauge theory coupled to

a single left-handed fermion is mathematic all y

inconsistent:

Z Z

S [A] D

G

Z = [dA]e  ][d ] e [d

Weyl

Z

1=2 S [A]

G

= [dA] det D [A] e

 There is a non-trivial gauge transformation U x

such that

1=2 U 1=2

det D [A] = det D [A ]

 Exp ectation value w.r.t. Z is indetermi na te:

h i =\0/0"

 D hermitian: eigenvalues are real and come in

pairs, 

U

 Vary gauge eld smo othly from A to A :





U

A t=1 t A + tA ; t 2 [0; 1]

 



 Atiyah-Singer: numb er of eigenvalues that b ecome

negative as t is varied from 0 to 1 is odd. 12

 Compute the eigenvalues of the overlap op erator

D in a lattice simulation, as A is smo othly

N 

U

O. Bar, Lattice 99 turned into A



 D : eigenvalues come in complex conjugate pairs;

N

exp ect level crossing for Im

0.2

0.1

0

-0.1

-0.2

0.4 0.5 0.6

 Crossing observed for lowest eigenvalue

! Numerical pro of of Witten's SU2 anomaly

 Only p ossible if lattice Dirac op erator has the

correct chiral prop erties 13

II. Simulations with dynamical quarks

 Quenched light hadron sp ectrum deviates from

exp eriment CP-PACS Collab oration, hep-lat/9904012:

Light Hadron Spectrum in Quenched QCD final results from CP−PACS

1.8

1.6 Ξ Ω 1.4 Σ Λ Ξ* φ 1.2 N Σ*

m (GeV) K* 1.0 ∆

0.8 experiment K K input φ input 0.6

0.4



m m to o small by 10 16 4 6 

K K

m =m =1:143  0:033 Exp.: 1:22; 2:5 

N 

 Quenched QCD describ es the light hadron

sp ectrum at the level of 10. 14

 Can sea quark e ects account for the deviation of

the quenched sp ectrum from exp eriment?

 Oa Improvement even more imp ortant:

{ exp ensive to simulate very small lattice spacings

{ need to separate lattice artefacts from sea quark

e ects

 Recent simulatio ns with n =2

f

Collab oration GFlops Gluons Quarks

CU/BNL/Riken US  250 Wilson DWF

CP-PACS J  300 Iwasaki SW, tad

UKQCD UK  28 Wilson SW, n.p.

SESAM/T L D/I  14 Wilson Wilson

>

MILC US 7:3 LW staggered



! identify two light avours with physical u; d quarks 15

 Observables in full QCD with n =2 avours:

f

Example: meson propagator:

val

m

sea

; ;

5 j 5 j

m

 Sea quarks are still relatively heavy:

sea val

m = m :



m m

0:67 0:86 UKQCD

 PS

= ;  =0:169

0:6 0:8 CP-PACS

m m

V 

sea

 Study the dep endence of observables on m ;

sea

Extrap olate in m to physical m =m

 

 Incorrect n for Kaon physics:

f

val sea

! cho ose m >m

val sea

;m = m and identify m = m

u;d s

! \partially quenched" 16

Sea quark e ects in the light hadron sp ectrum:

 Study the continuum limit of hadron masses in

\partially quenched" QCD

CP-PACS, T. Kaneko, Lattice 99

K* and φ masses, K input

RC (combined fits) 1.05 χ Φ quenched PW (q PT fits)

1.00

0.95

m [GeV] K* 0.90

0.85

0.80 0.0 0.2 0.4 0.6 0.8 1.0 1.2

a [GeV−1]

 Mesons: discrepancy with exp erimental sp ectrum

diminishe d when sea quarks are \switched on"

 Quantify sea quark e ects in the continuum limit

 Can remainin g di erences b e blamed on

- incorrect n =2 for strange hadrons?

f

- continuum extrap olation s?

- extrap olation s in the quark masses? 17

III. Light Quark Masses

 Recent progress:

{ controllin g lattice artefacts improvement

MS scheme { matching lattice results to

{ results from simulatio ns using DWF's

{ estimating sea quark e ects

 Current quark masses:

+ 2

m + m  h0ju sjK i m f = 

u s 5 K

K

u s = Z g ;a u s

5 P 0 5 lat

MS

2



g

4

2

0

Z g ;a = 1+ ln a+C + O g 

P 0

0

4 

 lattice p erturbati on theory do es not converge well

 scale dep enden ce complicates the situation

! no controlled p erturbati ve relation between

MS hadronic lattice scheme and

! develop non-p erturb ati ve matching techniques 18

 Intro duce an intermedia te renormalisati on scheme:

hadronic lattice

MS scheme

scheme, am

  m

lat

ref

MS

@

@

@

@

@

non-p erturbative p erturbative

@

@

Intermediate

@R

m  scheme:

X

1 Regularisation Indep enden t Martinelli, Sachrajda,...

q q  j q i =1 Z g ;a h q  j

5 P 0

lat

G:F:

MS and RI schemes related through continuum p erturbation

theory

2 Schrodinger Functional scheme L uscher et al.

Finite volume scheme; imp ose renormalisa tion

condition at scale  =1=L :

Z g ;a ;  =1=L ' 275 MeV

P 0 0 0 0

Z g ;a  computed non-p erturb ati vely for

P 0 0

a  0:1 0:045 fm for O a improved Wilson

action 19

<

 Compute m =M for    200 GeV

SF 0



M : renormalisa tion group invariant quark mass

 Scale evolution of m =M quenche d QCD

SF

Capitani, L uscher, Sommer, HW, Nucl. Phys. B544

1999 669

 For  = 275 MeV :

0

M

 =1:15715

0

m

SF

 Combine with matching factor Z g ;a  and lattice

P 0 0

matrix elements

2

M + M  M m

s l

2

K

+O a  =

lat

f m   Z g ;a h0jP jK i

K SF 0 P 0 0

M =M + M =2

l u d 20

 Continuum extrap olati on of M + M =f :

s l K

Garden, Heitger, Sommer, HW, hep-lat/9906013

 Continuum limit; f = 1602 MeV :

K

M + M = 140  5 MeV

s l

MS

 Convert into 2 GeV  using m

s

M =M =24:4  1:5 Chiral P.T.

s l

MS

=M =0:7208 at  =2GeV m

! Final result: all errors, except quenching

MS

2 GeV =97 4 MeV m

s

10 uncertain ty due to scale ambiguity in the

quenched approximation. 21

 Other recent results in the quenched

MS scheme,  =2GeV  approximation 

ref

NP

Collab. m m a ! 0 Z Impr.

l s

P

p

y

BNL/Riken/CU 5.14 12910  DWF

RI

p p p

y

QCDSF 4.409 1043

SF

p

CP-PACS 4.5518 1152  

p p

JLQCD 4.2329 1067 stagg.

RI

p

Blum, Soni

9526  DWF

& Wingate

p p

Becirevic

4.54 11112 

RI

et al.

y

:preliminary

Caution:

 Systematic errors not estimated uniformly

 Conversion into physical units using di erent

quantities 22

Sea quark e ects in m ;m :

l s

 Last year: very large e ects due to dynamical

quarks?

 1999: b etter separation of lattice artefacts and

sea quark e ects

 Recent results for n =2 by CP-PACS and MILC

f

Collab oration s partially quenched 

: CP-PACS, VWI : CP-PACS, AWI

: MILC, VWI

 Light quark masses decrease for n =2

f

 CP-PACS: m =m  25 in continuum limit

s l

sea

 Further exploration of systematics required m -

dep endenc e, a-e ects, renormali sati on 23

IV. Glueballs and Heavy Hybrids

 Idea: use anisotropic lattices: a  a

t s

 Exp onential decayofcorrelation function governed

by a M :

t

X

t0

a M t=a  y

t t

 e O ~x; tO 0

~x

 For a  a : slow exp onential fall-o , whilst

t s

preserving large spatial volumes

 Typically: a  0:2 0:4fm

s

 a =a =3 5

s t

! Cuto e ects in spatial lattice spacing may

be large; use Symanzik improvement to reduce

leading lattice artefacts

 Recent results:

{ Glueball sp ectrum b elow 4 GeV 

{ Quarkonia and heavy hybrids 24

Glueball sp ectrum: quenched QCD

Morningstar& Peardon, hep-lat/9901004

2

 Anisotropic, O a  improved gluon lattice action;

s

improvement co ecients xed p erturbati vely

 = a =a =3; 5

s t

2 2 4 2

! leading cuto e ects: O g a ;a ;a 

s s t

 Glueball op erators constructed from representa-

tions of the o ctahedral group: A ;A ;E;T ;T

1 2 1 2

10 ++ T1 9 3++ ++ A2 8

*++ *++ A 7 0 1 G ++ m

0 T

r 2 6 2++ E++ 5

++ 4 0 ++ A1

3 0.0 0.2 0.4 0.6 0.8 2

(as/r0) 25 12 0+−

+− 3−− 10 2 −− *−+ 2 4 2 −− ++ 1 3 0*−+ 3+− 8 2−+ 1+− 3 *++ 0 −+ G 0 6 2++ m (GeV) 0 G r

2 m 4 0++

1 2

0 0 ++ −+ +− −−

PC

 

r m =4:2112 4:335 M. Tep er

++

0

0

$

r m 6:01 hep-th/9812187 =5:856

++

0

2

1

r  395 MeV 

0

 Very comprehensive study of glueballs

 If a to o large: complicated mo del function for continuum

s

++

extrap olation may cause loss in precision c.f. 0 

 So far: no e ects of dynamical quarks, glueball-meson

mixing 26

Quarkonia and heavy hybrids:

bb; cc; bg b; cg c  Use similar techniques to study

states

! use anisotropic lattice gluon action

! treat heavy quarks non-relativisti ca ll y:

1

M  p = a

Q cut

s

 Discretised, e ective QCD action NRQCD

 Lattice spacing: acts as UV regulator and as

relativistic cuto

! Continuum limit a ! 0 cannot b e taken

s

! Rely on \window" in a where NRQCD works and

s

cuto e ects are small 27

 Recent results:

CP-PACS, Phys. Rev. Lett. 82 1999 4396

T. Manke, EPS99

Juge, Kuti & Morningstar, Phys. Rev. Lett. 82 1999

4400

 Compute S; P waves

++ ++

H 1 ;H 1 ;H 0  hybrids

1 2 3

 Results forlowest bg b hybrid:



1:5428 GeV CP-PACS

 H S =

1

1:4925 GeV JKM 28

V. Omissions

 Weak matrix elements:  S =2;  I =1=2;  I =

3=2

{ non-p erturb ati ve renormali sati on

{ chiral prop erties: domain wall fermions

A. Soni, EPS99

 Heavy-light decay constants: f ;f ;f ;:::

B B D

s

0

0

B mixing; S. Hashimoto, Lattice 99 B

{ quenched estimates stabilised; sea quark e ects

increase results by 15 20 ?

H. Shanahan, EPS99

{ study di erent formulation s of heavy quarks

NRQCD,:::

 Flavour-singlet amplitudes

0

{ ; mass, N sigma term,:::

{ sea quark contribution s to disconnected diagrams

 Structure functions R. Petronzio, Lattice 99

{ non-p erturb ati ve renormali sati on: RI, SF

 QCD at nite temp eratu re and density

F. Karsch, Lattice 99 29

VI. Summary

 Signi cant progress in formulation of chiral symmetry

at non-zero lattice spacing

Chiral gauge theories can be put on the lattice in a

consistent way

 Lattice simulations are b ecoming more re ned:

{ Symanzik improvement

{ Non-p erturba tive renormalisat ion

{ Anisotropic lattices

{ Simulations with dynamical quarks

 Quenched approximation works surprisingly well;

E ects of dynamical quarks are signi cant 30